z-Scaling of cumulative hadron production in pA collisions at high energies

A. Aparin, M. Tokarev
JINR, Dubna, Russia
Contents

- Introduction
- z-Scaling (ideas, definitions, properties, ...)
- Self-similarity of high-p_T pion production in pp & pA collisions, $\sqrt{s}=11.5-38.8$ GeV
- Self-similarity of low-p_T cumulative pion production in pA ($A=\text{Li, Be, C, Al, Cu, Ta}$)
- Conclusions
Motivation & Goals

Search for possible signatures of new physics phenomena in inclusive pp & pA collisions

Analysis of experimental data on inclusive spectra of hadron production in pA collisions to verify properties of z-scaling in low-p_T cumulative region

- pA is a reference frame for pp & AA
- cumulative process:
 - enhancement of nuclear matter compression
 - particle formation is sensitive to state of matter
 - search for indications of phase transition & CP
Phase diagram of strongly interacting matter

The phase diagram of water is established

- Phases (ice I-XV, liquid, vapor)
- Phase boundaries
- Phase transitions
- Triple Point (16)
- Critical Point (2)

The phase diagram of strongly interacting matter is under study

- Phases - ?
- Phase boundaries - ?
- Phase transitions - ?
- Triple Point - ?
- Critical Point - ?
Motivation of using z-scaling

z-scaling can be used as a tool to search for new physics in particle production in pp, AA & pA at high energies.

z-scaling reveals self-similar properties in hadron, jet and direct photon production in high energy hadron and nucleus collisions.

Description of hadron spectra using z-scaling approach
Development of z-scaling theory as a tool of physics analysis
Scaling & Universality

$\pi^-, K^-, \bar{p}, \Lambda$ in pp collisions

- Energy & angular independence
- Flavor independence (π, K, p, Λ)
- Saturation for $z<0.1$
- Power law for high $z>4$

Energy scan of spectra at U70, ISR, S$p\bar{p}$S, SPS, HERA, FNAL (fixed target), Tevatron, RHIC, LHC

M.T. & I.Zborovsky
T.Dedovich
J.Mod.Phys.3, 815 (2012)

Scaling – “collapse” of data points onto a single curve.
Scaled particle yield (Ψ) vs. scaled transverse momentum (z).
Universality classes – hadron species (ε_F, α_F).
z-Scaling

Principles: locality, self-similarity, fractality

Locality: collisions of hadrons and nuclei are expressed via interactions of their constituents (partons, quarks and gluons,...).

Self-similarity: interactions of the constituents are mutually similar.

Fractality: the self-similarity over a wide scale range.

Hypothesis of z-scaling:

Inclusive particle distributions can be described in terms of constituent sub-processes and parameters characterizing bulk properties of the system.

\[s^{1/2}, p_T, \theta_{\text{cms}} \]

\[x_1, x_2, \delta_1, \delta_2 \]

\[\frac{E d^3 \sigma}{dp^3} \] Scaled inclusive cross section of particles depends in a self-similar way on a single scaling variable \(z \).
Locality of hadron interactions

M.T. & I.Zborovský
Yu.Panebratsev, G.Skoro
JINR E2-99-113

Constituent subprocess

\[(x_1 M_1) + (x_2 M_2) \Rightarrow (m_1) + (x_1 M_1 + x_2 M_2 + m_2)\]

Kinematical condition (4-momentum conservation law):

\[(x_1 P_1 + x_2 P_2 - p)^2 = M_X^2\]

Recoil mass: \[M_X = x_1 M_1 + x_2 M_2 + m_2\]
Self-similar parameter z

$$z = z_0 \Omega^{-1}$$

$$z_0 = \frac{\sqrt{s_{\perp}}}{(dN_{\text{ch}}/d\eta|_0)m}$$

- $\sqrt{s_{\perp}}$ is the transverse kinetic energy of the subprocess consumed on production of m_1 & m_2
- $dN_{\text{ch}}/d\eta|_0$ is the multiplicity density of charged particles at $\eta = 0$
- m is an arbitrary constant (fixed at the value of nucleon mass)
- Ω^{-1} is the minimal resolution at which a constituent subprocess can be singled out of the inclusive reaction.
Fractal measure z

The fractality is reflected in definition of z

$$z = z_0 \Omega^{-1}$$

$$\Omega = (1 - x_1)^{\delta_1} (1 - x_2)^{\delta_2}$$

Ω is relative number of configurations containing a sub-process with fractions x_1, x_2 of the corresponding 4-momenta

δ_1, δ_2 are parameters characterizing structure of the colliding objects

$\Omega^{-1} (x_1, x_2)$ characterizes resolution at which a constituent sub-process can be singled out of the inclusive reaction

$$z(\Omega) \bigg|_{\Omega^{-1} \to \infty} \to \infty$$

The fractal measure z diverges as the resolution Ω^{-1} increases.
Scaling function $\Psi(z)$

$$\int_0^\infty \Psi(z)dz = 1$$

$z \rightarrow \alpha_F z, \quad \Psi \rightarrow \alpha_F^{-1} \Psi$

$$\Psi(z) = \frac{\pi}{(dN/d\eta) \cdot \sigma_{\text{inel}}} \cdot J^{-1} \cdot E \frac{d^3\sigma}{dp^3} \quad \longleftrightarrow \quad \int E \frac{d^3\sigma}{dp^3} dy d^2p_\perp = \sigma_{\text{inel}} \cdot N$$

- σ_{in} - inelastic cross section
- N - average multiplicity of the corresponding hadron species
- $dN/d\eta$ - pseudorapidity multiplicity density at angle θ (η)
- $J(z,\eta;p_T^2,y)$ - Jacobian
- $E d^3\sigma/dp^3$ - inclusive cross section

The scaling function $\Psi(z)$ is probability density to produce an inclusive particle with the corresponding z.

Hadron structure, June 30 – July 4, 2013
A-dependence of z-scaling

The scaling transformations of z and $\Psi(z)$ allow us to compare scaling functions for different nuclei.

$$z \rightarrow \alpha(A) \cdot z$$
$$\Psi(z) \rightarrow \alpha^{-1}(A) \cdot \Psi(z)$$

$$\alpha(A) \approx 0.9 A^{0.15}$$

Self-similarity of nuclear modification of constituent interactions and hadron formation.

$$z = z_0 \, \Omega^{-1}$$
$$\Omega = (1 - x_1)^{\delta_1} (1 - x_2)^{\delta_2}$$

$$\delta_1 = A_1 \delta, \ \delta_2 = A_2 \delta$$

M.T., Yu.Panebratsev, I.Zborovsky, G.Skoro

Hadron structure, June 30 – July 4, 2013
Self-similarity of hadron production in pp

Spectra

- 10 orders of magnitude
- Sensitive to energy \sqrt{s} at high p_T
- Power law for high \sqrt{s} and p_T

High-p_T Spectra

- Energy independence of $\Psi(z)$
- Power law of $\Psi(z)$ at high z

Scale invariance

Independence of the shape of the curve on $\{z, \Psi\}$ plane on scale quantities \sqrt{s}, p_T, θ

Self-similarity of hadron production in pA

Strong dependence of spectra on \sqrt{s} at high p_T

- Energy independence of $\Psi(z)$
- Power law of $\Psi(z)$ at high z
- A-dependence of $\Psi(z)$

Scale invariance
Independence of the shape of the curve on $\{z, \Psi\}$ plane on scale quantities \sqrt{s}, p_T, θ

M.T., Yu. Panebratsev, I. Zborovsky, G. Skoro
Cumulative pion spectra in pA at FNAL

- Spectra in cumulative region: \(p > 0.5 \text{ GeV/c} \).
- Smooth behavior of spectra vs. \(p \).
- Stronger angular dependence with \(p \).
- \(A \)-dependence of spectra (\(A=7-181 \)).

Universal shape of $\Psi(z)$

Power law for $z > 4$

No discontinuity of $\delta_2 = A_2 \delta$

Scale invariance

Independence of the shape of the curve on $\{z, \Psi\}$ plane on scale quantities \sqrt{s}, p_T, θ

$z \rightarrow \alpha(A) z$

$\Psi \rightarrow \alpha^{-1}(A) \Psi$
High-p$_T$ and low-p$_T$ pion production in pA

C, Al & D

- Collapse of data points
- Universal shape of $\Psi(z)$
- Self-similarity over a wide kinematic range

$\theta^\pi_{lab} = 180^\circ$

<table>
<thead>
<tr>
<th>p</th>
<th>D</th>
<th>C</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.447</td>
<td>0.905</td>
<td>5.13</td>
<td>10.6</td>
</tr>
<tr>
<td>0.456</td>
<td>0.928</td>
<td>5.53</td>
<td>12.2</td>
</tr>
<tr>
<td>0.459</td>
<td>0.933</td>
<td>5.63</td>
<td>12.7</td>
</tr>
</tbody>
</table>

A. Aparin & M.T. (2013)
High-p_T and low-p_T pion production in pA

Cu, Ta & D

- Collapse of data points
- Universal shape of $\Psi(z)$
- Self-similarity of hadron production over a wide range of energy \sqrt{s}, angle θ transverse momentum p_T and atomic number A

<table>
<thead>
<tr>
<th>θ_{lab}</th>
<th>p_L (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$= 180^0$</td>
<td>70</td>
</tr>
<tr>
<td>$p_{\pi_{\text{max}}}$ (GeV/c)</td>
<td>400</td>
</tr>
<tr>
<td>0.447</td>
<td>20.7</td>
</tr>
<tr>
<td>0.905</td>
<td>37.8</td>
</tr>
<tr>
<td>0.456</td>
<td>27.9</td>
</tr>
<tr>
<td>0.928</td>
<td>69.8</td>
</tr>
<tr>
<td>0.459</td>
<td>30.0</td>
</tr>
<tr>
<td>0.933</td>
<td>84.7</td>
</tr>
</tbody>
</table>

A. Aparin & MT (2013)
Momentum fractions x_1 & x_2 vs. p_T

Proton fragmentation region
$0 < x_1 < 1$
Non-cumulative region
$x_2 < 1/A$

Nucleus fragmentation region
$0 < x_2 < 1$
Cumulative region
$x_2 > 1/A$
Cumulative pion spectra in pA

predictions based on z-scaling

- Spectra in cumulative region: $p > 0.5 \text{ GeV/c}$
- Smooth behavior of spectra vs. p_T
- Verification of the additive law $\delta_A = A\delta$

Self-similarity
High-\(p_T\) and low-\(p_T\) pion production in \(pA\)

FNAL (J.Cronin, G.Leksin, D.Jaffe) & **U70** (R.Sulyaev)

- Beam Energy Scan in \(pA\)
- Spectra of cumulative identified particles
- Multiplicity density \(dN_{ch}/d\eta\) vs. \(\sqrt{s}\) and \(\eta\)
- Centrality dependence of spectra
- Power law \(\Psi(z) \sim z^{-\beta}\), in cumulative region
- Discontinuity of fractal dimensions \(\delta_1, \delta_2\)

Suggestions to \(pA\) physics program:

Goal: Search for phase transition & CP \(\leftrightarrow\) Search for violation of \(z\)-scaling

Hadron structure, June 30 – July 4, 2013
Conclusions

- The FNAL data on cumulative pion spectra in pA collisions at $\sqrt{s}=27.4$ GeV were analyzed in z-scaling approach.
- Results of this analysis were compared with previous ones from the data obtained by J. Cronin, R. Sulyaev and D. Jaffe groups.
- Indication on self-similarity of the pion production in pA collisions at low-p_T in the cumulative region were obtained.
- Universality of the shape of $\Psi(z)$ was used to predict the pion spectra in pA collisions in the deep-cumulative range ($1/A << x_2 < 1$).

z-Scaling of hadron production in pA collisions at high energies manifests self-similarity, locality and fractality of hadron interactions at a constituent level.

The results can be used to develop the program to search for new physics phenomena in pA collisions at U70, RHIC, LHC & NICA, FAIR
Thank you for your attention!
Back-up slides
Self-similarity of hadron production in \(pD \)

Spectra
- 10 orders of magnitude
- Sensitive to energy \(\sqrt{s} \) at high \(p_T \)
- Power law for high \(\sqrt{s} \) and \(p_T \)

High-\(p_T \) Spectra

Energy independence of \(\Psi(z) \)
- Power law of \(\Psi(z) \) at high \(z \)

Fractal dimensions in \(pA \) & \(AA \)
\[\delta_1 = A_1 \delta, \quad \delta_2 = A_2 \delta \]

Cumulative pion spectra in pA

$\sqrt{s}=27.4$ GeV

$A=\text{Li, Be, C, Al, Cu, Ta}$

$\theta_{lab} = 70^0, 90^0, 118^0, 160^0$

Beam Atomic Number and Energy Scan in Cumulative Processes

Hadron structure, June 30 – July 4, 2013
Angular dependence of $dN_{ch}/d\eta (\sqrt{s, \theta, A})$

- The shape of $\Psi(z)$ is the same for all nuclei
- Restoration of normalization of $\Psi(z)$ at fixed θ_{lab} over a wide range of p_T
Momentum fractions x_1, x_2

Principle of minimal resolution: The momentum fractions x_1, x_2 are determined in a way to minimize the resolution Ω^{-1} of the fractal measure z with respect to all constituent sub-processes taking into account 4-momentum conservation:

$$\Omega = (1 - x_1)^\delta_1 (1 - x_2)^\delta_2$$

$$\frac{\partial \Omega}{\partial x_1} \bigg|_{x_2 = x_2(x_1)} = 0$$

Momentum conservation law:

$$(x_1 P_1 + x_2 P_2 - p)^2 = M_X^2$$

Recoil mass

$$M_X = x_1 M_1 + x_2 M_2 + m_2$$
Transverse kinetic energy $\sqrt{s_\perp}$

\[
s_{\perp}^{1/2} = (s_{\chi}^{1/2} - M_1 \lambda_1 - M_2 \lambda_2) - m_1 + (s_{\chi}^{1/2} - M_1 \chi_1 - M_2 \chi_2) - m_2
\]

- Energy consumed for the inclusive particle m_1
- Energy consumed for the recoil particle m_2

Fraction decomposition:

\[
x_{1,2} = \lambda_{1,2} + \chi_{1,2}
\]

\[
\lambda_{1,2} = \kappa_{1,2} + \nu_{1,2}
\]

\[
\chi_{1,2} = (\mu_{1,2}^2 + \omega_{1,2}^2)^{1/2} + \omega_{1,2}
\]

\[
\omega_{1,2} = \mu_{1,2} U, \quad U = \frac{\alpha - 1}{2\sqrt{\alpha}} \xi, \quad \alpha = \frac{\delta_2}{\delta_1}
\]

\[
\xi^2 = (\lambda_1 \lambda_2 + \lambda_0) / [(1 - \lambda_1)(1 - \lambda_2)]
\]

The scaling variable z and scaling function $\Psi(z)$ are expressed via relativistic invariants.