Constraints on QCD order parameters from $\eta \rightarrow \pi^+\pi^-\pi^0$

Marián Kolesár

(in collaboration with J. Novotný)

A) Resummed approach to χPT
B) The $\eta \rightarrow \pi^+\pi^-\pi^0$ decay width
C) Statistical analysis
D) Assumptions
E) Results - a first look
F) Summary, discussion and outlook

Hadron Structure'13, Tatranské Matliare, June 30, 2013
A) Quick introduction to resummed χPT

Standard chiral perturbation theory ($N_f=3$) (Gasser, Leutwyler 1985)

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int D\pi \ e^{i \int d^4x \ L_{eff}[\pi,v,a,s,p]}$$

SBχS: $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \frac{i}{F_0} \pi^a(x)\lambda^a, \ M = \text{diag}(m_u, m_d, m_s)$$

Effective Lagrangian:

$$L_{eff} = L^{(2)} + L^{(4)} + L^{(6)} + \ldots$$

$$L^{(2(k+l))} \sim p^{2k} \chi^l, \ \chi = 2B_0 M$$

$$L^{(2)} = \frac{F_0^2}{4} \text{Tr}[D_\mu U D^\mu U^+] + (U^+\chi + \chi^+U)$$

$$L^{(4)} = \mathcal{L}^{(4)}(L_1 \ldots L_{10}) + \mathcal{L}^{(4)}_{WZ}$$

$$L^{(6)} = \mathcal{L}^{(6)}(C_1 \ldots C_{90}) + \mathcal{L}^{(6)}_{WZ}(C_1^W \ldots C_{23}^W)$$
A) Quick introduction to resummed χPT

Standard chiral perturbation theory ($N_f=3$)
(Gasser, Leutwyler 1985)

Generating functional:

$$ e^{iZ_{eff} [\pi, v, a, s, p]} = \int D\pi \; e^{i \int d^4x \; L_{eff} [\pi, v, a, s, p]} $$

SBχS: $SU(3)_L \times SU(3)_R \to SU(3)_V$
expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$ U(x) = \exp \frac{i}{F_0} \pi^a(x) \lambda^a, \quad \mathcal{M} = \text{diag}(m_u, m_d, m_s) $$

Effective Lagrangian:

$$ L_{eff} = L^{(2)} + L^{(4)} + L^{(6)} + \ldots $$

$$ L^{(2(k+l))} \sim p^{2k} \chi^l, \quad \chi = 2B_0 \mathcal{M} $$

$$ L^{(2)} = \frac{F_0^2}{4} \text{Tr}[D_{\mu} U D^{\mu} U^+] + (U^+ \chi + \chi^+ U) $$

$$ L^{(4)} = L^{(4)}(L_1 \ldots L_{10}) + L^{(4)}_{WZ} $$

$$ L^{(6)} = L^{(6)}(C_1 \ldots C_{90}) + L^{(6)}_{WZ}(C_1^W \ldots C_{23}^W) $$
A) Quick introduction to resummed χPT

Standard chiral perturbation theory ($N_f=3$)

(Gasser, Leutwyler 1985)

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int \mathcal{D}\pi \ e^{i\int d^4x \ L_{eff}[\pi,v,a,s,p]}$$

SBχS: $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp\left(\frac{i}{F_0}\pi^a(x)\lambda^a\right), \quad \mathcal{M} = \text{diag}(m_u, m_d, m_s)$$

Effective Lagrangian:

$$L_{eff} = L^{(2)} + L^{(4)} + L^{(6)} + \ldots$$

$$L^{(2(k+l))} \sim p^{2k}\chi^l, \quad \chi = 2B_0\mathcal{M}$$

$$L^{(2)} = \frac{F_0^2}{4} \text{Tr}[D_\mu UD^\mu U^+ + (U^+\chi + \chi^+U)]$$

$$L^{(4)} = L^{(4)}(L_1 \ldots L_{10}) + L^{(4)}_{WZ}$$

$$L^{(6)} = L^{(6)}(C_1 \ldots C_{90}) + L^{(6)}_{WZ}(C_1^W \ldots C_{23}^W)$$
A) Quick introduction to resummed χPT

Standard chiral perturbation theory ($N_f=3$)
(Gasser, Leutwyler 1985)

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int D\pi \ e^{i \int d^4x \ L_{eff}[\pi,v,a,s,p]}$$

SBχS: $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \left(\frac{i}{F_0} \pi^a(x) \lambda^a \right), \quad M = \text{diag}(m_u, m_d, m_s)$$

Effective Lagrangian:

$$L_{eff} = L^{(2)} + L^{(4)} + L^{(6)} + \ldots$$

$$L^{(2(k+l))} \sim p^{2k+2l}, \quad \chi = 2B_0 M$$

$$L^{(2)} = \frac{F_0^2}{4} \text{Tr}[D_\mu UD^\mu U^+ + (U^+ \chi + \chi^+ U)]$$

$$L^{(4)} = L^{(4)}(L_1 \ldots L_{10}) + L^{(4)}_{WZ}$$

$$L^{(6)} = L^{(6)}(C_1 \ldots C_{90}) + L^{(6)}_{WZ}(C_1^W \ldots C_{23}^W)$$
A) Quick introduction to resummed χPT

Standard chiral perturbation theory ($N_f=3$)
(Gasser, Leutwyler 1985)

Generating functional:

$$e^{iZ_{eff}[\pi,v,a,s,p]} = \int D\pi e^{i\int d^4x L_{eff}[\pi,v,a,s,p]}$$

$SB\chi S$: $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ expansion in momenta and quark masses

Building blocks: $\pi^a \sim \pi, K, \eta$

$$U(x) = \exp \frac{i}{F_0} \pi^a(x) \lambda^a, \quad M = \text{diag}(m_u, m_d, m_s)$$

Effective Lagrangian:

$$L_{eff} = L^{(2)} + L^{(4)} + L^{(6)} + \ldots$$

$$L^{(2(k+l))} \sim p^{2k} \chi^l, \quad \chi = 2B_0M$$

$$L^{(2)} = \frac{F_0^2}{4} \text{Tr}[D_\mu U D^\mu U^+ + (U^+ \chi + \chi^+ U)]$$

$$L^{(4)} = L^{(4)}(L_1 \ldots L_{10}) + L^{(4)}_{WZ}$$

$$L^{(6)} = L^{(6)}(C_1 \ldots C_{90}) + L^{(6)}_{WZ}(C_1^W \ldots C_{23}^W)$$
Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion
(*Descotes-Genon, Fuchs, Girlanda, Stern 2004*)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting (*Gasser, Leutwyler 1984, 1985*)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting
 (Gasser, Leutwyler 1984, 1985)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting
 (Gasser, Leutwyler 1984, 1985)
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim

- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method

- Standard χPT Lagrangian and power counting
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Quick introduction to resummed χPT

Resummed χPT - a special treatment of the chiral expansion

(Descotes-Genon, Fuchs, Girlanda, Stern 2004)

Motivation and aim
- possibly slow or irregular convergence of 3 flavour chiral series
- Standard χPT implicitly assumes good convergence, hides uncertainties
- express these assumptions in terms of parameters and uncertainty bands

Summary of the method
- Standard χPT Lagrangian and power counting *(Gasser, Leutwyler 1984, 1985)*
- only expansions derived directly from the generating functional trusted
- manipulations done in non-perturbative algebraic way
- explicitly to NLO, formally to all orders - collected in remainders
- remainders not neglected, estimated and treated as sources of error
A) Treatment of low energy constants

\[\mathcal{O}(p^2): \quad F_0 - \text{pseudoscalar decay constant in the chiral limit} \]

\[\Sigma - \text{quark condensate in the chiral limit} \quad (\Sigma = B_0 F_0^2) \]

\[r - \text{strange to light quark ratio} \]

\[R - \text{isospin violation} \quad (\text{light quark mass difference}) \]

\[
Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2 \hat{m} \Sigma}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}
\]

where \(\hat{m} = (m_u + m_d)/2 \)

\[\mathcal{O}(p^4): \quad L_4-L_8 - \text{in terms of } F_P^2, M_P^2 \]

- algebraically, indirect remainders generated

\[\mathcal{O}(p^6) \text{ and higher: } C_i \text{'s etc.} \]

Allowed range: \(X, Z \in (0,1) \) - only weak constraints from \(\pi\pi \) and \(\pi K \)

Two flavour values: \(X(2) = 0.81 \pm 0.07, \ Z(2) = 0.89 \pm 0.03 \)

Paramagnetic inequality: \(X < X(2), \ Z < Z(2) \)

Standard assumption \(Z \sim 1, \ X \sim 1, \ r \sim 25; \) latest \(S_\chi \text{PT fit } Z \sim 0.5, \ X \leq Z \)
A) Treatment of low energy constants

$\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit
Σ - quark condensate in the chiral limit ($\Sigma = B_0 F_0^2$)
r - strange to light quark ratio
R - isospin violation (light quark mass difference)

\[
Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2 \hat{m} \Sigma}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}
\]

where $\hat{m} = (m_u + m_d)/2$

$\mathcal{O}(p^4)$: $L_4 - L_8$ - in terms of F_π^2, M_π^2
- algebraically, indirect remainders generated

$\mathcal{O}(p^6)$ and higher: C_i's etc.

Allowed range: $X, Z \in (0,1)$ - only weak constraints from $\pi\pi$ and πK

Two flavour values: $X(2) = 0.81 \pm 0.07, Z(2) = 0.89 \pm 0.03$

Paramagnetic inequality: $X < X(2), Z < Z(2)$

Standard assumption $Z \sim 1, X \sim 1, r \sim 25$; latest $S_\chi PT$ fit $Z \sim 0.5, X \leq Z$
A) Treatment of low energy constants

$\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit
Σ - quark condensate in the chiral limit ($\Sigma = B_0 F_0^2$)
r - strange to light quark ratio
R - isospin violation (light quark mass difference)

$$Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2 \hat{m} \Sigma}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}$$

where $\hat{m} = (m_u + m_d)/2$

control of SBχS scenario

$\mathcal{O}(p^4)$: L_4-L_8 - in terms of F_P^2, M_P^2
- algebraically, indirect remainders generated

reparametrized

$\mathcal{O}(p^6)$ and higher: C_i's etc.

implicit in remainders

Allowed range: $X, Z \in (0, 1)$ - only weak constraints from $\pi\pi$ and πK

Two flavour values: $X(2) = 0.81 \pm 0.07, Z(2) = 0.89 \pm 0.03$

Paramagnetic inequality: $X < X(2), Z < Z(2)$

Standard assumption $Z \sim 1, X \sim 1, r \sim 25$; latest $S\chi$PT fit $Z \sim 0.5, X \leq Z$
A) Treatment of low energy constants

$\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit
Σ - quark condensate in the chiral limit ($\Sigma = B_0 F_0^2$)
r - strange to light quark ratio
R - isospin violation (light quark mass difference)

$$Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2 \hat{m} \Sigma}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}$$
where $\hat{m} = (m_u + m_d)/2$

$\mathcal{O}(p^4)$: L_4-L_8 - in terms of F_P^2, M_P^2
- algebraically, indirect remainders generated

$\mathcal{O}(p^6)$ and higher: C_i's etc.

Allowed range: $X, Z \in (0, 1)$ - only weak constraints from $\pi\pi$ and πK

Two flavour values: $X(2) = 0.81 \pm 0.07, Z(2) = 0.89 \pm 0.03$

Paramagnetic inequality: $X < X(2), Z < Z(2)$

Standard assumption $Z \sim 1, X \sim 1, r \sim 25$; latest S_χPT fit $Z \sim 0.5, X \leq Z$
A) Treatment of low energy constants

$\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit

- Σ - quark condensate in the chiral limit ($\Sigma = B_0 F_0^2$)

- r - strange to light quark ratio

- R - isospin violation (light quark mass difference)

$$Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2 \hat{m} \Sigma}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}$$

where $\hat{m} = (m_u + m_d)/2$

$\mathcal{O}(p^4)$: L_4-L_8 - in terms of F_π^2, M_π^2

- algebraically, indirect remainders generated

$\mathcal{O}(p^6)$ and higher: C_i's etc.

Allowed range: $X, Z \in (0, 1)$ - only weak constraints from $\pi\pi$ and πK (Descotes-Genon 2007)

Two flavour values: $X(2) = 0.81 \pm 0.07$, $Z(2) = 0.89 \pm 0.03$ (Stern et al. 2000, 2002)

Paramagnetic inequality: $X < X(2), Z < Z(2)$

Standard assumption $Z \sim 1, X \sim 1, r \sim 25$; latest $S\chi$PT fit $Z \sim 0.5, X \leq Z$
A) Treatment of low energy constants

$\mathcal{O}(p^2)$: F_0 - pseudoscalar decay constant in the chiral limit
Σ - quark condensate in the chiral limit ($\Sigma = B_0 F_0^2$)
r - strange to light quark ratio
R - isospin violation (light quark mass difference)

\[
Z = \frac{F_0^2}{F_\pi^2}, \quad X = \frac{2 \hat{m} \Sigma}{F_\pi^2 M_\pi^2}, \quad r = \frac{m_s}{\hat{m}}, \quad R = \frac{(m_s - \hat{m})}{(m_d - m_u)}
\]

where $\hat{m} = (m_u + m_d)/2$

control of SBχS scenario

$\mathcal{O}(p^4)$: L_4-L_8 - in terms of F_P^2, M_P^2
- algebraically, indirect remainders generated

$\mathcal{O}(p^6)$ and higher: C_i's etc.

Allowed range: $X, Z \in (0, 1)$ - only weak constraints from $\pi\pi$ and πK
(Descotes-Genon 2007)

Two flavour values: $X(2) = 0.81 \pm 0.07, Z(2) = 0.89 \pm 0.03$
(Stern et al. 2000, 2002)

Paramagnetic inequality: $X < X(2), Z < Z(2)$

Standard assumption $Z \sim 1, X \sim 1, r \sim 25$; latest $S\chi$PT fit $Z \sim 0.5, X \leq Z$
(Bijnens, Jemos 2011)
B) The $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay width

PDG: \[\Gamma_{\text{exp}} = 296 \pm 16 \text{ eV} \] \hspace{1cm} (PDG 2012)

The decay amplitude in terms of 4-point Green functions:

\[F_\pi^3 F_\eta A(s, t, u) = G_{+-83}^{(4)} - \varepsilon_\pi G_{+-33}^{(4)} + \varepsilon_\eta G_{+-88}^{(4)} + \Delta_{G_D}^{(6)} \]

- to first order in isospin breaking, EM effects neglected
- physical mixing angles to all chiral orders and first in $1/R$

Direct remainder expansion around the Dalitz plot center

\[\Delta_{G_D} = \Delta_A + \Delta_B (s - s_0) + \Delta_C (s - s_0)^2 + \Delta_D [(t - s_0)^2 + (u - s_0)^2] \]

19 parameters:
- LO: X, Z, r, R
- NLO: L_1, L_2, L_3
- direct rem.: $\Delta_A, \Delta_B, \Delta_C, \Delta_D$
- indirect rem.: $\Delta_{M_\pi}, \Delta_{F_\pi}, \Delta_{M_K}, \Delta_{F_K}, \Delta_{M_\eta}, \Delta_{F_\eta}, \Delta_{M_{38}}, \Delta_{Z_{38}}$
B) The $\eta \to \pi^+\pi^-\pi^0$ decay width

PDG: $\Gamma_{\exp} = 296\pm16$ eV

The decay amplitude in terms of 4-point Green functions:

$$F_\pi^3 F_\eta A(s, t, u) = G^{(4)}_{+-83} - \varepsilon_\pi G^{(4)}_{+-33} + \varepsilon_\eta G^{(4)}_{+-88} + \Delta^{(6)}_{GD}$$

- to first order in isospin breaking, EM effects neglected
- physical mixing angles to all chiral orders and first in $1/R$

Direct remainder expansion around the Dalitz plot center

$$\Delta_{GD} = \Delta_A + \Delta_B (s - s_0) + \Delta_C (s - s_0)^2 + \Delta_D [(t - s_0)^2 + (u - s_0)^2]$$

19 parameters:

- LO: X, Z, r, R
- NLO: L_1, L_2, L_3
- direct rem.: Δ_A, Δ_B, Δ_C, Δ_D
- indirect rem.: $\Delta_{M\pi}$, $\Delta_{F\pi}$, Δ_{M_K}, Δ_{F_K}, Δ_{M_η}, Δ_{F_η}, $\Delta_{M_{38}}$, $\Delta_{Z_{38}}$
B) The $\eta \to \pi^+\pi^-\pi^0$ decay width

PDG: \[\Gamma_{\text{exp}} = 296 \pm 16 \text{ eV} \] (PDG 2012)

The decay amplitude in terms of 4-point Green functions:
\[F_{\pi}^3 F_{\eta} A(s, t, u) = G_{++83}^{(4)} - \varepsilon_{\pi} G_{+-33}^{(4)} + \varepsilon_{\eta} G_{++88}^{(4)} + \Delta_{G_D}^{(6)} \]

- to first order in isospin breaking, EM effects neglected
- physical mixing angles to all chiral orders and first in $1/R$

Direct remainder expansion around the Dalitz plot center
\[\Delta_{G_D} = \Delta_A + \Delta_B (s - s_0) + \Delta_C (s - s_0)^2 + \Delta_D [(t - s_0)^2 + (u - s_0)^2] \]

19 parameters:
- LO: X, Z, r, R
- NLO: L_1, L_2, L_3
- direct rem.: Δ_A, Δ_B, Δ_C, Δ_D
- indirect rem.: ΔM_π, ΔF_π, ΔM_K, ΔF_K, ΔM_η, ΔF_η, ΔM_{38}, ΔZ_{38}
B) The $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay width

PDG: $\Gamma_{\text{exp}} = 296\pm16\text{ eV}$ \hfill (PDG 2012)

The decay amplitude in terms of 4-point Green functions:

$$F^3_\pi F_\eta A(s, t, u) = G^{(4)}_{+\hbar 83} - \varepsilon_\pi G^{(4)}_{+\hbar 33} + \varepsilon_\eta G^{(4)}_{+\hbar 88} + \Delta^{(6)}_{GD}$$

- to first order in isospin breaking, EM effects neglected
- physical mixing angles to all chiral orders and first in $1/R$

Direct remainder expansion around the Dalitz plot center

$$\Delta_{GD} = \Delta_A + \Delta_B (s - s_0) + \Delta_C (s - s_0)^2 + \Delta_D [(t - s_0)^2 + (u - s_0)^2]$$

19 parameters:
- LO: X, Z, r, R
- NLO: L_1, L_2, L_3
- direct rem.: Δ_A, Δ_B, Δ_C, Δ_D
- indirect rem.: ΔM_π, ΔF_π, ΔM_K, ΔF_K, ΔM_η, ΔF_η, ΔM_{38}, ΔZ_{38}
C) Statistical analysis

Bayes’ theorem
(Stern et al. 2004)

\[
P(X_i | \Gamma_{\text{exp}}) = \frac{P(\Gamma_{\text{exp}} | X_i)P(X_i)}{\int dX_i P(\Gamma_{\text{exp}} | X_i)P(X_i)}
\]

- \(P(X_i | \Gamma_{\text{exp}})\) - probability density of \(X_i\) being true given \(\Gamma_{\text{exp}}\)

\[
P(\Gamma_{\text{exp}} | X_i) = \frac{1}{\sigma_{\text{exp}} \sqrt{2\pi}} \exp\left[-\frac{(\Gamma_{\text{exp}} - \Gamma(X_i))^2}{2 \sigma_{\text{exp}}^2}\right]
\]
- experimental distribution

\[
P(X_i) - \text{probability distribution of } X_i \text{ (prior)}
\]

- theoretical assumptions explicit and under control
- various assumptions testable

num.integration too demanding → Monte Carlo sampling

- 10000 samples per grid element, \(10^5-10^6\) total samples
- stability tested with smaller samples (1000 per grid element)
- in depth statistical stability test in preparation
C) Statistical analysis

Bayes’ theorem

\[P(X_i | \Gamma_{\text{exp}}) = \frac{P(\Gamma_{\text{exp}} | X_i)P(X_i)}{\int dX_i P(\Gamma_{\text{exp}} | X_i)P(X_i)} \]

\[P(X_i | \Gamma_{\text{exp}}) \] - probability density of \(X_i \) being true given \(\Gamma_{\text{exp}} \)

\[P(\Gamma_{\text{exp}} | X_i) = \frac{1}{\sigma_{\text{exp}} \sqrt{2\pi}} \exp \left[-\frac{(\Gamma_{\text{exp}} - \Gamma(X_i))^2}{\sigma_{\text{exp}}^2} \right] \] - experimental distribution

\[P(X_i) \] - probability distribution of \(X_i \) (prior)

- theoretical assumptions explicit and under control
- various assumptions testable

num.integration too demanding \(\rightarrow \) Monte Carlo sampling

- 10000 samples per grid element, 10^5-10^6 total samples
- stability tested with smaller samples (1000 per grid element)
- in depth statistical stability test in preparation
D) Assumptions

$r=25$: motivated by lattice

L_{1-3}: mean and spread of a set of standard χPT fits:

\[
L_1^r(M_\rho) = (0.60 \pm 0.28) \cdot 10^{-3}
\]
\[
L_2^r(M_\rho) = (0.88 \pm 0.34) \cdot 10^{-3}
\]
\[
L_3^r(M_\rho) = (-2.97 \pm 0.47) \cdot 10^{-3}
\]

weak dependence of the amplitude on L_{1-3}

Δ_k: based on general arguments about the convergence of chiral series

\[
\Delta_G^{(4)} \approx \pm 0.3G,
\]
\[
\Delta_G^{(6)} \approx \pm 0.1G
\]

two implementations:

- normal distribution: $\mu=0$, $\sigma=0.1G$
- uniform distribution: $\Delta_G \in (-0.1G, 0.1G)$
- incompatible at $p \approx 0.68^{12} \approx 2.6\sigma$ level

R: (constraints on X and Z)

$R = 37.8 \pm 3.3$

- beware: includes assumption that NNLO S_χPT converges well at a specific kinematic point

X: (constraints on R)

$X \in (0,1)$ or $X \in (0,0.9)$

Z: (constraints on R)

$Z \in (0,1)$ or $Z \in (0.5,0.9)$
D) Assumptions

r=25: motivated by lattice

L_{1-3}: mean and spread of a set of standard χPT fits:

\[
L_r^1(M_\rho) = (0.60\pm0.28)\cdot10^{-3}
\]
\[
L_r^2(M_\rho) = (0.88\pm0.34)\cdot10^{-3}
\]
\[
L_r^3(M_\rho) = (-2.97\pm0.47)\cdot10^{-3}
\]

weak dependence of the amplitude on L_{1-3}

Δ_k: based on general arguments about the convergence of chiral series

\[
\Delta^{(4)}_G \approx \pm 0.3G, \quad \Delta^{(6)}_G \approx \pm 0.1G
\]

two implementations:
- normal distribution: $\mu=0$, $\sigma=0.1G$
- uniform distribution: $\Delta_G \in (-0.1G, 0.1G)$
- incompatible at $p \approx 0.68^{12} \approx 2.6\sigma$ level

R: (constraints on X and Z) \[R = 37.8 \pm 3.3 \]

- beware: includes assumption that NNLO S_χPT converges well at a specific kinematic point

X: (constraints on R) \[X \in (0, 1) \] or \[X \in (0, 0.9) \]

Z: (constraints on R) \[Z \in (0, 1) \] or \[Z \in (0.5, 0.9) \]
D) Assumptions

-$r = 25$: motivated by lattice

L_{1-3}: mean and spread of a set of standard χPT fits:

- $L_1^r(M_\rho) = (0.60\pm0.28) \cdot 10^{-3}$
- $L_2^r(M_\rho) = (0.88\pm0.34) \cdot 10^{-3}$
- $L_3^r(M_\rho) = (-2.97\pm0.47) \cdot 10^{-3}$

weak dependence of the amplitude on L_{1-3}

Δ_k: based on general arguments about the convergence of chiral series

$\Delta_G^{(4)} \approx \pm 0.3G, \quad \Delta_G^{(6)} \approx \pm 0.1G$

two implementations:

- normal distribution: $\mu=0, \sigma=0.1G$
- uniform distribution: $\Delta_G \in (-0.1G, 0.1G)$
- incompatible at $p \approx 0.68^{12} \approx 2.6\sigma$ level

R: (constraints on X and Z)

- beware: includes assumption that NNLO $S\chi$PT converges well at a specific kinematic point

X: (constraints on R)

- $X \in (0, 1)$ or $X \in (0, 0.9)$

Z: (constraints on R)

- $Z \in (0, 1)$ or $Z \in (0.5, 0.9)$
D) Assumptions

\(\eta \rightarrow 3\pi \): motivated by lattice \((\text{FLAG} \ 2011)\)

\(L_{1-3} \): mean and spread of a set of standard \(\chi \)PT fits:

\[
L_1^r(M_\rho) = (0.60 \pm 0.28) \cdot 10^{-3} \\
L_2^r(M_\rho) = (0.88 \pm 0.34) \cdot 10^{-3} \\
L_3^r(M_\rho) = (-2.97 \pm 0.47) \cdot 10^{-3}
\]

weak dependence of the amplitude on \(L_{1-3} \)

\(\Delta_k \): based on general arguments about the convergence of chiral series \((\text{Stern} \ et \ al \ 2004)\)

\[
\Delta_G^{(4)} \approx \pm 0.3G, \quad \Delta_G^{(6)} \approx \pm 0.1G
\]

two implementations:

- normal distribution: \(\mu = 0, \sigma = 0.1G \) \((\text{Stern} \ et al. \ 2004)\)
- uniform distribution: \(\Delta_G \in (-0.1G, 0.1G) \) \((\text{Descotes-Genon} \ 2007)\)
- incompatible at \(p \approx 0.68^{12} \approx 2.6\sigma \) level

\(R \): (constraints on \(X \) and \(Z \)) \(R = 37.8 \pm 3.3 \) \((\text{Kampf} \ et \ al. \ 2011)\)

- beware: includes assumption that NNLO \(S\chi \)PT converges well at a specific kinematic point

\(X \): (constraints on \(R \)) \(X \in (0,1) \) or \(X \in (0,0.9) \)

\(Z \): (constraints on \(R \)) \(Z \in (0,1) \) or \(Z \in (0.5,0.9) \)
D) Assumptions

\(r = 25 \): motivated by lattice

\(L_{1-3} \): mean and spread of a set of standard \(\chi \)PT fits:

\[
L_1^r(M_\rho) = (0.60 \pm 0.28) \cdot 10^{-3} \\
L_2^r(M_\rho) = (0.88 \pm 0.34) \cdot 10^{-3} \\
L_3^r(M_\rho) = (-2.97 \pm 0.47) \cdot 10^{-3}
\]

weak dependence of the amplitude on \(L_{1-3} \)

\(\Delta_k \): based on general arguments about the convergence of chiral series

\[
\Delta_G^{(4)} \approx \pm 0.3G, \quad \Delta_G^{(6)} \approx \pm 0.1G
\]

two implementations:

- normal distribution: \(\mu = 0, \sigma = 0.1G \)
- uniform distribution: \(\Delta_G \in (-0.1G, 0.1G) \)
- incompatible at \(p \approx 0.68^{12} \approx 2.6\sigma \) level

\(R \): (constraints on \(X \) and \(Z \)) \(R = 37.8 \pm 3.3 \)

- beware: includes assumption that NNLO \(S_\chi \)PT converges well at a specific kinematic point

\(X \): (constraints on \(R \)) \(X \in (0, 1) \) or \(X \in (0, 0.9) \)

\(Z \): (constraints on \(R \)) \(Z \in (0, 1) \) or \(Z \in (0.5, 0.9) \)
E) Results - a first look

I. Constraints on X and Z - probability distribution ($Y = X/Z$)

Regions with $Y_{\text{max}} \leq 0.75$ and $Y_{\text{min}} \geq 2$:

- $p = 95.5\% = 2.0\sigma$
- $p = 99.9\% = 3.2\sigma$ vs. $p = 96.8\% = 2.1\sigma$
E) Results - a first look

I. Constraints on X and Z - probability distribution $(Y = X/Z)$

Normal distribution of remainders

Uniform vs. normal distribution

Regions with $Y_{\text{max}} \leq 0.75$ and $Y_{\text{min}} \geq 2$:

$p = 95.5\% = 2.0\sigma$

$p = 99.9\% = 3.2\sigma$ vs. $p = 96.8\% = 2.1\sigma$
E) Results - a first look

I. Constraints on X and Z - probability distribution ($Y = X/Z$)

Normal distribution of remainders

Uniform vs. normal distribution

Regions with $Y_{\text{max}} \leq 0.75$ and $Y_{\text{min}} \geq 2$:

$p = 95.5\% = 2.0\sigma$

$p = 99.9\% = 3.2\sigma \text{ vs. } p = 96.8\% = 2.1\sigma$
E) Results - a first look

II. Constraints on R - probability distribution

\begin{align*}
X, Z \in (0, 1) & \\
X \in (0, 0.9), Z \in (0.5, 0.9) & \\
\end{align*}

not statistically significant

\begin{align*}
R > 44: & \quad p = 97.3\% = 2.2\sigma \\
R > 40: & \quad p = 92.8\% = 1.8\sigma
\end{align*}
E) Results - a first look

II. Constraints on R - probability distribution

$X, Z \in (0, 1)$

$X \in (0, 0.9), \ Z \in (0.5, 0.9)$

not statistically significant

$R > 44: \ p = 97.3\% = 2.2\sigma$

$R > 40: \ p = 92.8\% = 1.8\sigma$
II. Constraints on R - probability distribution

$X, Z \in (0, 1)$

$X \in (0, 0.9), \ Z \in (0.5, 0.9)$

\[R > 44: \ p = 97.3\% = 2.2\sigma \]

\[R > 40: \ p = 92.8\% = 1.8\sigma \]

not statistically significant
Our preliminary results have shown:

- the $\eta \to \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L., $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.
Our preliminary results have shown:

- the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L. $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.
F) Summary, discussion and outlook

Our preliminary results have shown:

- the $\eta \to \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L.
 $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.

Thank you for your attention!
Our preliminary results have shown:

- the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L. $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.
F) Summary, discussion and outlook

Our preliminary results have shown:

- the $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L.
 $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.
F) Summary, discussion and outlook

Our preliminary results have shown:

• the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z

• a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R

• $Y = X/Z \geq 1$ seems to be preferred

• normal and uniform distributions of the remainders have provided qualitatively similar outcomes

• it’s hard to constrain R without information on X and Z

• assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L.
 $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.
Our preliminary results have shown:

- the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L.
 $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.
Our preliminary results have shown:

- the $\eta \rightarrow \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L. $R > 40$ at 1.8σ C.L.

Outlook - we plan include a wider range of experimental data, to extend the analysis to more parameters and to perform an in depth statistical stability test of the Monte Carlo sampling.
Our preliminary results have shown:

- the $\eta \to \pi^+\pi^-\pi^0$ decay width is sensitive to the value of the principal QCD order parameters, expressed in terms X and Z
- a large portion of the parameter space can be excluded at 2.0σ C.L., given information about R
- $Y = X/Z \geq 1$ seems to be preferred
- normal and uniform distributions of the remainders have provided qualitatively similar outcomes
- it’s hard to constrain R without information on X and Z
- assuming $Z > 0.5$ excludes: $R > 44$ at 2.2σ C.L.
 $R > 40$ at 1.8σ C.L.

Outlook - we plan to include a wider range of experimental data, to extend the analysis to more parameters and to perform an in-depth statistical stability test of the Monte Carlo sampling.

Thank you for your attention!