Renormalization group for the Standard Model without dimensional regularization

Grigory Pivovarov

INR RAS, Moscow

HS2015, June-July 2015
Evolution of the scalar mass: ϕ^4

Scalar field anomalous dimension:
$$\gamma_\Phi = \frac{g^2}{12(16\pi^2)^2}$$

- **Naive** (quadratic divergence in the self-energy, Susskind, 1979):
 $$m^2(Q^2)/Q^2 = m_{ph}^2/Q^2 + \gamma_\Phi$$
- **Smart** (MS-scheme, Macfarlane & Collins 1974):
 $$m^2(Q^2)/Q^2 = (m_{ph}^2/Q^2)^{1-\gamma_\Phi}$$
- **Correct** (Gell-Mann—Law scheme, GP, 2010):
 $$\frac{m^2(Q^2)}{Q^2} = \frac{\gamma_\Phi}{1-4\gamma_\Phi \log \frac{Q^2}{m_{ph}^2}}$$

There is a Landau pole in the scalar mass squared for ϕ^4.
Evolution of the scalar mass: ϕ^4

Scalar field anomalous dimension: $\gamma_\Phi = \frac{g^2}{12(16\pi^2)^2}$

- Naive (quadratic divergence in the self-energy, Susskind, 1979): $m^2(Q^2)/Q^2 = m_{ph}^2/Q^2 + \gamma_\Phi$
- Smart (MS-scheme, Macfarlane & Collins 1974): $m^2(Q^2)/Q^2 = (m_{ph}^2/Q^2)^{1-\gamma_\Phi}$
- Correct (Gell-Mann—Law scheme, GP, 2010): $\frac{m^2(Q^2)}{Q^2} = \frac{\gamma_\Phi}{1-4\gamma_\Phi \log \frac{Q^2}{m_{ph}^2}}$

There is a Landau pole in the scalar mass squared for ϕ^4
Evolution of the scalar mass: ϕ^4

Scalar field anomalous dimension: $\gamma_\phi = \frac{g^2}{12(16\pi^2)^2}$

- Naive (quadratic divergence in the self-energy, Susskind, 1979): $m^2(Q^2)/Q^2 = m^2_{ph}/Q^2 + \gamma_\phi$
- Smart (MS-scheme, Macfarlane & Collins 1974): $m^2(Q^2)/Q^2 = (m^2_{ph}/Q^2)^{1-\gamma_\phi}$
- Correct (Gell-Mann–Law scheme, GP, 2010):
 \[\frac{m^2(Q^2)}{Q^2} = \frac{\gamma_\phi}{1-4\gamma_\phi \log \frac{Q^2}{m^2_{ph}}} \]

There is a Landau pole in the scalar mass squared for ϕ^4
Evolution of the scalar mass: ϕ^4

Scalar field anomalous dimension: $\gamma_\phi = \frac{g^2}{12(16\pi^2)^2}$

- Naive (quadratic divergence in the self-energy, Susskind, 1979): $m^2(Q^2)/Q^2 = m_{\text{ph}}^2/Q^2 + \gamma_\phi$
- Smart (MS-scheme, Macfarlane & Collins 1974): $m^2(Q^2)/Q^2 = (m_{\text{ph}}^2/Q^2)^{1-\gamma_\phi}$
- Correct (Gell-Mann—Law scheme, GP, 2010):
 $$\frac{m^2(Q^2)}{Q^2} = \frac{\gamma_\phi}{1-4\gamma_\phi \log \frac{Q^2}{m_{\text{ph}}^2}}$$

There is a Landau pole in the scalar mass squared for ϕ^4
Motivation
Generalization of G-L
Generalization of Gauge Theories
Example: $g_4 \sim g_3^2$
Conclusions

Evolution of the scalar mass: ϕ^4

Scalar field anomalous dimension: $\gamma_\phi = \frac{g^2}{12(16\pi^2)^2}$

- Naive (quadratic divergence in the self-energy, Susskind, 1979): $m^2(Q^2)/Q^2 = m_{\text{ph}}^2/Q^2 + \gamma_\phi$
- Smart (MS-scheme, Macfarlane & Collins 1974): $m^2(Q^2)/Q^2 = (m_{\text{ph}}^2/Q^2)^{1-\gamma_\phi}$
- Correct (Gell-Mann—Law scheme, GP, 2010): $\frac{m^2(Q^2)}{Q^2} = \frac{\gamma_\phi}{1 - 4\gamma_\phi \log \frac{Q^2}{m_{\text{ph}}^2}}$

There is a Landau pole in the scalar mass squared for ϕ^4
Implications for the naturalness problem

\[\frac{\delta m^2(Q^2)}{m^2(Q^2)} \equiv r\left(\frac{m^2_{ph}}{Q^2}, \gamma \Phi\right) \frac{\delta m^2_{ph}}{m^2_{ph}} \]

- Naive: \(r = \frac{m^2_{ph}}{Q^2} / \left(\frac{m^2_{ph}}{Q^2} + \gamma \Phi \right) \). Accuracy grows infinitely with \(Q^2 \). Expectation of new physics at 1 TeV.
- Smart: \(r = 1 - \gamma \Phi \). No naturalness problem. Expectation of the “great desert”
- Correct: \(r = \frac{4\gamma \Phi}{1 - 4\gamma \Phi \log \frac{Q^2}{m^2_{ph}}} \). No naturalness problem due to the Landau pole in the mass squared
Implications for the naturalness problem

\[
\frac{\delta m^2(Q^2)}{m^2(Q^2)} \equiv r \left(\frac{m_{ph}^2}{Q^2}, \gamma \Phi \right) \frac{\delta m_{ph}^2}{m_{ph}^2}
\]

- Naive: \(r = \frac{m_{ph}^2}{Q^2} / \left(\frac{m_{ph}^2}{Q^2} + \gamma \Phi \right) \). Accuracy grows infinitely with \(Q^2 \). Expectation of new physics at 1 TeV.
- Smart: \(r = 1 - \gamma \Phi \). No naturalness problem. Expectation of the "great desert"
- Correct: \(r = \frac{4 \gamma \Phi}{1 - 4 \gamma \Phi \log \frac{Q^2}{m_{ph}^2}} \). No naturalness problem due to the Landau pole in the mass squared
Implications for the naturalness problem

\[
\frac{\delta m^2(Q^2)}{m^2(Q^2)} \equiv r\left(\frac{m_{ph}^2}{Q^2}, \gamma_\Phi\right) \frac{\delta m_{ph}^2}{m_{ph}^2}
\]

- Naive: \(r = \frac{m_{ph}^2}{Q^2} / (\frac{m_{ph}^2}{Q^2} + \gamma_\Phi) \). Accuracy grows infinitely with \(Q^2 \). Expectation of new physics at 1 TeV.

- Smart: \(r = 1 - \gamma_\Phi \). No naturalness problem. Expectation of the “great desert”

- Correct: \(r = \frac{4\gamma_\Phi}{1 - 4\gamma_\Phi \log \frac{Q^2}{m_{ph}^2}} \). No naturalness problem due to the Landau pole in the mass squared.
Implications for the naturalness problem

\[\frac{\delta m^2(Q^2)}{m^2(Q^2)} \equiv r\left(\frac{m^2_{ph}}{Q^2}, \gamma\Phi \right) \frac{\delta m^2_{ph}}{m^2_{ph}} \]

- **Naive:** \(r = \frac{m^2_{ph}}{Q^2} / \left(\frac{m^2_{ph}}{Q^2} + \gamma\Phi \right) \). Accuracy grows infinitely with \(Q^2 \). Expectation of new physics at 1 TeV.

- **Smart:** \(r = 1 - \gamma\Phi \). No naturalness problem. Expectation of the “great desert”

- **Correct:** \(r = \frac{4\gamma\Phi}{1-4\gamma\Phi \log \frac{Q^2}{m^2_{ph}}} \). No naturalness problem due to the Landau pole in the mass squared
in the Standard Model, the Landau pole in the scalar mass squared is replaced with asymptotic freedom?

\[
\frac{m^2(Q^2)}{Q^2} = \frac{B(g)}{1 + A(g) \log \frac{Q^2}{m^2_{ph}}}
\]

\[
r(Q^2) = \frac{A(g)}{1 + A(g) \log \frac{Q^2}{m^2_{ph}}}
\]

For the asymptotic freedom case, accuracy grows logarithmically. The value of the “anomalous dimension” \(A(g) \) governs “the scale new physics.”
What if...

in the Standard Model, the Landau pole in the scalar mass squared is replaced with asymptotic freedom?

\[
\frac{m^2(Q^2)}{Q^2} = \frac{B(g)}{1 + A(g) \log \frac{Q^2}{m^2_{\text{ph}}}}
\]

\[
r(Q^2) = \frac{A(g)}{1 + A(g) \log \frac{Q^2}{m^2_{\text{ph}}}}
\]

For the asymptotic freedom case, accuracy grows logarithmically. The value of the “anomalous dimension” $A(g)$ governs “the scale new physics.”
What if...

in the Standard Model, the Landau pole in the scalar mass squared is replaced with asymptotic freedom?

\[
\frac{m^2(Q^2)}{Q^2} = \frac{B(g)}{1 + A(g) \log \frac{Q^2}{m^2_{ph}}} \\
\]

\[
r(Q^2) = \frac{A(g)}{1 + A(g) \log \frac{Q^2}{m^2_{ph}}} \\
\]

For the asymptotic freedom case, accuracy grows logarithmically. The value of the “anomalous dimension” \(A(g) \) governs “the scale new physics.”
What if...

in the Standard Model, the Landau pole in the scalar mass squared is replaced with asymptotic freedom?

\[
\frac{m^2(Q^2)}{Q^2} = \frac{B(g)}{1 + A(g) \log \frac{Q^2}{m^2_{\text{ph}}}}
\]

\[
r(Q^2) = \frac{A(g)}{1 + A(g) \log \frac{Q^2}{m^2_{\text{ph}}}}
\]

For the asymptotic freedom case, accuracy grows logarithmically. The value of the “anomalous dimension” \(A(g)\) governs “the scale new physics.”
History

From Gell-Mann—Low to ’t Hooft—Weinberg

From conceptually sound nonlinear equations for QED Green functions to technically convenient linear equations of ’t Hooft and Weinberg (present-day standard)

Scalar fields

Weinberg—scalar field is a singular case, needs extra consideration (1973)
Macfarlane & Collins—scalar fields are OK in MS-scheme (1974)
Veltman—MS-scheme ignores poles at dimensions $(4 - 2/\# \text{ of loops}) \equiv$ ignores quadratic divergences (1981)
History

From Gell-Mann—Low to ’t Hooft—Weinberg

From conceptually sound nonlinear equations for QED Green functions to technically convenient linear equations of ’t Hooft and Weinberg (present-day standard)

Scalar fields

Weinberg—scalar field is a singular case, needs extra consideration (1973)
Macfarlane & Collins—scalar fields are OK in MS-scheme (1974)
Veltman—MS-scheme ignores poles at dimensions
\[(4 - 2/(\# \text{ of loops})) \equiv \text{ignors quadratic divergences} \text{ (1981)}\]
Task

To take into account ssb and quadratic divergences in renormalization group evolution of the Standard Model

Problem 1:
Definition of the Gell-Mann–Low scheme for the most general theory

Problem 2:
Proliferation of terms in the Lagrangian after shifting the scalar field to the vacuum value (what are the evolving parameters?)
Task

To take into account ssb and quadratic divergences in renormalization group evolution of the Standard Model

Problem 1:
Definition of the Gell-Mann–Low scheme for the most general theory

Problem 2:
Proliferation of terms in the Lagrangian after shifting the scalar field to the vacuum value (what are the evolving parameters?)
Motivation

Generalization of G-L

Generalization of Gauge Theories

Example: $g_4 \sim g_3^2$

Conclusions

Task

To take into account SSB and quadratic divergences in renormalization group evolution of the Standard Model

Problem 1:
Definition of the Gell-Mann–Low scheme for the most general theory

Problem 2:
Proliferation of terms in the Lagrangian after shifting the scalar field to the vacuum value (what are the evolving parameters?)
Plan

Generalization of Gell-Mann–Low (Problem 1)
- Specify extraction of parameters from Green functions
- Specify expression of Green functions in terms of these parameters

Generalization of gauge theories (Problem 2)
- Ignore unitarity
- Keep renormalizability
- Keep $g_4 = g_3^2$
Plan

Generalization of Gell-Mann–Low (Problem 1)
- Specify extraction of parameters from Green functions
- Specify expression of Green functions in terms of these parameters

Generalization of gauge theories (Problem 2)
- Ignore unitarity
- Keep renormalizability
- Keep $g_4 = g_3^2$
Plan

Generalization of Gell-Mann–Low (Problem 1)
- Specify extraction of parameters from Green functions
- Specify expression of Green functions in terms of these parameters

Generalization of gauge theories (Problem 2)
- Ignore unitarity
- Keep renormalizability
- Keep $g_4 = g_3^2$
Plan

Generalization of Gell-Mann–Low (Problem 1)
- Specify extraction of parameters from Green functions
- Specify expression of Green functions in terms of these parameters

Generalization of gauge theories (Problem 2)
- Ignore unitarity
- Keep renormalizability
- Keep $g_4 = g_3^2$
Plan

Generalization of Gell-Mann–Low (Problem 1)
- Specify extraction of parameters from Green functions
- Specify expression of Green functions in terms of these parameters

Generalization of gauge theories (Problem 2)
- Ignore unitarity
- Keep renormalizability
- Keep $g_4 = g_3^2$
Plan

Generalization of Gell-Mann–Low (Problem 1)
- Specify extraction of parameters from Green functions
- Specify expression of Green functions in terms of these parameters

Generalization of gauge theories (Problem 2)
- Ignore unitarity
- Keep renormalizability
- Keep \(g_4 = g_3^2 \)
Plan

<table>
<thead>
<tr>
<th>Generalization of Gell-Mann–Low (Problem 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Specify extraction of parameters from Green functions</td>
</tr>
<tr>
<td>• Specify expression of Green functions in terms of these parameters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generalization of gauge theories (Problem 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ignore unitarity</td>
</tr>
<tr>
<td>• Keep renormalizability</td>
</tr>
<tr>
<td>• Keep $g_4 = g_3^2$</td>
</tr>
</tbody>
</table>
Extraction of parameters—Propagator

Inverse propagator R

Let $D^{AB}(k)$ be the propagator matrix; let $R_{AB}D^{BC} = \delta_C^A$

Inverse block propagator \bar{R}

There are entries in R mixing fields of different spin (corresponding to field combinations $\phi \partial_\mu A^\mu$). Suppression of these entries: $R \to \bar{R}$

Invariant structures T

$\bar{R}(k) = \sum_\alpha T_\alpha(k)r^\alpha(k^2)$

$r^\alpha(k^2)$—set of scalar “form-factors”
Extraction of parameters—Propagator

inverse propagator R

Let $D^{AB}(k)$ be the propagator matrix; let $R_{AB}D^{BC} = \delta^C_A$

inverse block propagator \tilde{R}

There are entries in R mixing fields of different spin (corresponding to field combinations $\phi \partial_\mu A^\mu$). Suppression of these entries: $R \rightarrow \tilde{R}$

invariant structures T

$$\tilde{R}(k) = \sum_\alpha T_\alpha(k)r^\alpha(k^2)$$

$r^\alpha(k^2)$—set of scalar “form-factors”
Extraction of parameters—Propagator

inverse propagator R

Let $D^{AB}(k)$ be the propagator matrix; let $R_{AB}D^{BC} = \delta^C_A$

inverse block propagator \bar{R}

There are entries in R mixing fields of different spin (corresponding to field combinations $\phi \partial_\mu A^\mu$). Suppression of these entries: $R \rightarrow \bar{R}$

invariant structures T

$\bar{R}(k) = \sum_\alpha T_\alpha(k)r^\alpha(k^2)$

$r^\alpha(k^2)$—set of scalar “form-factors”
Extraction of parameters—Propagator (continued)

extraction of local part

\[\Delta_{Q^2} \bar{R}(k^2) \equiv R_{Q^2}(k^2) \]
\[\Delta_{Q^2} \bar{R}(k) \equiv T_\alpha(k) \Delta_{Q^2} r^\alpha(k^2) \]
\[\Delta_{Q^2} r^\alpha(k^2) = r^\alpha(Q^2) + dr^\alpha(Q^2)(k^2 - Q^2) \]

The last term with the derivative should be suppressed for the scalar form-factors from the spinor block

locality

\(R_{Q^2}(k) \) is a polynomial in \(k \). Its coefficients are finite parameters of the theory. \(I_{Q^2,F}(\Phi) \equiv \frac{1}{2}(R_{Q^2})^T_{AB} \Phi^A \Phi^B \) is a finite local functional. Forward reference: \(I_F(\Phi) \) is a free part of the “inaction functional”
Extraction of parameters—Propagator (continued)

extraction of local part

\[
\Delta Q^2 \bar{R}(k^2) \equiv R_{Q^2}(k^2) \\
\Delta Q^2 \bar{R}(k) \equiv T_\alpha(k) \Delta Q^2 r^\alpha(k^2) \\
\Delta Q^2 r^\alpha(k^2) = r^\alpha(Q^2) + dr^\alpha(Q^2)(k^2 - Q^2)
\]

The last term with the derivative should be suppressed for the scalar form-factors from the spinor block.

locality

\(R_{Q^2}(k) \) is a polynomial in \(k \). Its coefficients are finite parameters of the theory. \(I_{Q^2,F}(\Phi) \equiv \frac{1}{2}(R_{Q^2})^T_{AB} \Phi^A \Phi^B \) is a finite local functional. Forward reference: \(I_F(\Phi) \) is a free part of the “inaction functional.”
Extraction of parameters from three- and four-point Green functions

extraction from three-point functions

\[A_3(\Phi) \rightarrow A_3(k_1, k_2, k_3) \rightarrow \sum_{\alpha} T_\alpha(k)r^\alpha(k_i k_j) \]

\(r^\alpha \) is three-index tensor; scalar in the Lorentz indexes; depending on the scalar products \(k_i k_j \)

Suppression of Lorentz structures

Some structures in the complete list of Lorentz structures should be suppressed for particular models. For example:

\[A_{\nu_1}^\mu A_{\mu \nu_2} \partial_\nu A_{\nu_3}^\nu \] should be suppressed for non-abelian gauge theories.

\[A_3(\Phi) \rightarrow \text{suppression} \rightarrow \bar{A}_3(\Phi) \]
Extraction of parameters from three- and four-point Green functions

Extraction from three-point functions

\[A_3(\Phi) \rightarrow A_3(k_1, k_2, k_3) \rightarrow \sum_\alpha T_\alpha(k)r^\alpha(k_ik_j) \]

\(r^\alpha \) is three-index tensor; scalar in the Lorentz indexes; depending on the scalar products \(k_ik_j \)

Suppression of Lorentz structures

Some structures in the complete list of Lorentz structures should be suppressed for particular models. For example:

\[A^\mu_{v_1}A^{\mu\nu}_2 \partial_\nu A^\nu_{v_3} \] should be suppressed for non-abelian gauge theories.

\[A_3(\Phi) \rightarrow \text{suppression} \rightarrow \bar{A}_3(\Phi) \]
Extraction of parameters from three- and four-point Green functions (continued)

extraction of local part

\[\Delta_{Q^2} A_3(\Phi) = \tilde{A}_3(\Phi)|_{k_i^2=Q^2} \equiv I_{Q^2,3}(\Phi) \]

\[I_{Q^2,3}(\Phi) \text{ is a finite local functional cubic in the fields.} \]

inaction functional \[I_{Q^2} \]

\[I_{Q^2,F}(\Phi) + I_{Q^2,3}(\Phi) + I_{Q^2,4}(\Phi) \equiv I_{Q^2}(\Phi) \]

\[I_{Q^2,4}(\Phi) \text{ is defined in complete analogy to } I_{Q^2,3}(\Phi) \]

\[I_{Q^2}(\Phi) \text{ is a finite local functional, containing all the parameters of the model. They depend on } Q^2. \text{ This dependence is described by renormalization group equations} \]
Extraction of parameters from three- and four-point Green functions (continued)

extraction of local part

\[\Delta_{Q^2} A_3(\Phi) = \bar{A}_3(\Phi)|_{k_i^2 = Q^2} \equiv I_{Q^2,3}(\Phi) \]

\(I_{Q^2,3}(\Phi) \) is a finite local functional cubic in the fields.

inaction functional \(I_{Q^2} \)

\[I_{Q^2,F}(\Phi) + I_{Q^2,3}(\Phi) + I_{Q^2,4}(\Phi) \equiv I_{Q^2}(\Phi) \]

\(I_{Q^2,4}(\Phi) \) is defined in complete analogy to \(I_{Q^2,3}(\Phi) \)

\(I_{Q^2}(\Phi) \) is a finite local functional, containing all the parameters of the model. They depend on \(Q^2 \). This dependence is described by renormalization group equations.
expression of Green functions in terms of $I_{Q^2}(\Phi)$

condition

If the bare action of the model $S_B(\Phi)$ satisfies the condition $\Delta_{Q^2}S_B(\Phi) = S_B(\Phi)$, the connected Green functions of this model can be expressed in terms of $I_{Q^2}(\Phi)$.

The recipe

$$W(J) = R_{Q^2} \log T_{I_{Q^2,F}} \exp(I_{Q^2,3}(\Phi) + I_{Q^2,4}(\Phi) + iJ)$$

Here R_{Q^2} is a specially tuned renormalization operation.

For details see V.T. Kim & GP, 2010—2015
expression of Green functions in terms of $I_{Q^2} (\Phi)$

condition

If the bare action of the model $S_B (\Phi)$ satisfies the condition $\Delta_{Q^2} S_B (\Phi) = S_B (\Phi)$, the connected Green functions of this model can be expressed in terms of $I_{Q^2} (\Phi)$.

The recipe

$W(J) = R_{Q^2} \log T_{I_{Q^2,F}} \exp(I_{Q^2,3}(\Phi) + I_{Q^2,4}(\Phi) + iJ)$

Here R_{Q^2} is a specially tuned renormalization operation.

For details see V.T. Kim & GP, 2010–2015
expression of Green functions in terms of \(I_{Q^2}(\Phi) \)

condition

If the bare action of the model \(S_B(\Phi) \) satisfies the condition \(\Delta Q^2 S_B(\Phi) = S_B(\Phi) \), the connected Green functions of this model can be expressed in terms of \(I_{Q^2}(\Phi) \).

The recipe

\[
W(J) = R_{Q^2} \log T_{I_{Q^2,F}} \exp(I_{Q^2,3}(\Phi) + I_{Q^2,4}(\Phi) + iJ)
\]

Here \(R_{Q^2} \) is a specially tuned renormalization operation.

For details see V.T. Kim & GP, 2010—2015
Peculiarity of R_{Q^2}

R_{Q^2} subtracts not only divergences. It also subtracts some finite parts originting from connected subgraphs (not only 1pi-subgraphs generate counterterms).

Role of combinatorics

No struggle with divergences: as soon as $\Delta_{Q^2}S_B(\Phi) = S_B(\Phi)$, R_{Q^2} can be combinatorially constructed from Δ_{Q^2}.

The loop

$S_B(\Phi) \rightarrow W(J) \rightarrow I_{Q^2}(\Phi) \rightarrow S_B(\Phi)$ The inaction is the classical action with parameters extracted from Green functions (Dominicis-Englert duality for the last step)
Comments

Peculiarity of R_{Q^2}

R_{Q^2} subtracts not only divergences. It also subtracts some finite parts originting from connected subgraphs (not only $\text{1pi-subgraphs generate counterterms}$)

Role of combinatorics

No struggle with divergences: as soon as $\Delta_{Q^2}S_B(\Phi) = S_B(\Phi)$, R_{Q^2} can be combinatorially constructed from Δ_{Q^2}.

The loop

$S_B(\Phi) \rightarrow W(J) \rightarrow I_{Q^2}(\Phi) \rightarrow S_B(\Phi)$ The inaction is the classical action with parameters extracted from Green functions (Dominicis-Englert duality for the last step)
Comments

Peculiarity of R_{Q^2}

R_{Q^2} subtracts not only divergences. It also subtracts some finite parts originating from connected subgraphs (not only 1pi-subgraphs generate counterterms).

Role of combinatorics

No struggle with divergences: as soon as $\Delta_{Q^2} S_B(\Phi) = S_B(\Phi)$, R_{Q^2} can be combinatorially constructed from Δ_{Q^2}.

The loop

$S_B(\Phi) \rightarrow W(J) \rightarrow I_{Q^2}(\Phi) \rightarrow S_B(\Phi)$ The inaction is the classical action with parameters extracted from Green functions (Dominicis-Englert duality for the last step)
Abstraction against complexity

- No need to restrict consideration to unitary theories, if the aim is to study the renormalization group
- Renormalizability + locality + Lorentz invariance
- Example: $g f_{abc} A^a_\mu A^b_\nu (\partial^\mu A^c_\nu - \partial^\nu A^\mu_\nu) \to g_{abc}^{(3)} A^a_\mu A^b_\nu \partial^\mu A^\nu_\nu$
- Couplings are tensors with respect to gauge group and flavour indexes, like $g_{abc}^{(3)}$
- RG equations is a set of tensorial evolution equations for tensorial couplings
Abstraction against complexity

- No need to restrict consideration to unitary theories, if the aim is to study the renormalization group
- renormalizability + locality + Lorentz invariance
- example: $gf_{abc}A^a_\mu A^b_\nu(\partial^\mu A^{\nu c} - \partial^{\nu} A^{\mu c}) \rightarrow \ g^{(3)}_{abc}A^a_\mu A^b_\nu\partial^\mu A^{\nu c}$
- Couplings are tensors with respect to gauge group and flavour indexes, like $g_{abc}^{(3)}$
- RG equations is a set of tensorial evolution equations for tensorial couplings
Abstraction against complexity

- No need to restrict consideration to unitary theories, if the aim is to study the renormalization group
- Renormalizability + locality + Lorentz invariance
- Example: \(gf_{abc} A_{\mu}^a A_{\nu}^b (\partial^\mu A^{\nu c} - \partial^\nu A^{\mu c}) \rightarrow g_{abc}^{(3)} A_{\mu}^a A_{\nu}^b \partial^\mu A^{\nu c} \)
- Couplings are tensors with respect to gauge group and flavour indexes, like \(g_{abc}^{(3)} \)
- RG equations is a set of tensorial evolution equations for tensorial couplings
Abstraction against complexity

- No need to restrict consideration to unitary theories, if the aim is to study the renormalization group
- Renormalizability + locality + Lorentz invariance
- Example: $g_{\alpha\beta\gamma}A_{\mu}^{\alpha}A_{\nu}^{\beta}(\partial^{\mu}A^{\nu\gamma} - \partial^{\nu}A^{\mu\gamma}) \rightarrow g_{\alpha\beta\gamma}^{(3)}A_{\mu}^{\alpha}A_{\nu}^{\beta}\partial^{\mu}A^{\nu\gamma}$
- Couplings are tensors with respect to gauge group and flavour indexes, like $g_{\alpha\beta\gamma}^{(3)}$
- RG equations is a set of tensorial evolution equations for tensorial couplings
Abstraction against complexity

- No need to restrict consideration to unitary theories, if the aim is to study the renormalization group
- renormalizability + locality + Lorentz invariance
- example: \(g f_{abc} A^a_\mu A^b_\nu (\partial^\mu A^{\nu c} - \partial^\nu A^{\mu c}) \rightarrow g^{(3)}_{abc} A^a_\mu A^b_\nu \partial^\mu A^{\nu c} \)
- Couplings are tensors with respect to gauge group and flavour indexes, like \(g^{(3)}_{abc} \)
- RG equations is a set of tensorial evolution equations for tensorial couplings
Peculiarity of non-abelian theories

Quartic couplings are functions of cubic couplings

- $g^{(4)} = f(g^{(3)}) = O((g^{(3)})^2)$
- Tensorial functions: $g^{(4)}_{abcd} = c_1 g^{(3)}_{abn} (Z^{-1})^{nm} g^{(3)}_{mcd} + ...$
- even after ssb, all quartic couplings are functions of cubic ones
- In terms of inaction: $I^{(4)}_{Q^2} = F(I^{(3)}_{Q^2})$
Peculiarity of non-abelian theories

Quartic couplings are functions of cubic couplings

- \(g^{(4)} = f(g^{(3)}) = O((g^{(3)})^2) \)
- Tensorial functions: \(g^{(4)}_{abcd} = c_1 g^{(3)}_{abc} (Z^{-1})^{nm} g^{(3)}_{mcd} + ... \)
- even after ssb, all quartic couplings are functions of cubic ones
- In terms of inaction: \(I^{(4)}_{Q^2} = F(I^{(3)}_{Q^2}) \)
Peculiarity of non-abelian theories

Quartic couplings are functions of cubic couplings

- $g^{(4)} = f(g^{(3)}) = O((g^{(3)})^2)$
- Tensorial functions: $g_{abcd}^{(4)} = c_1 g_{abn}^{(3)} (Z^{-1})^{nm} g_{mcd}^{(3)} + ...$
- even after ssb, all quartic couplings are functions of cubic ones
- In terms of inaction: $I_{Q^2}^{(4)} = F(I_{Q^2}^{(3)})$
Peculiarity of non-abelian theories

Quartic couplings are functions of cubic couplings

- \(g^{(4)} = f(g^{(3)}) = O((g^{(3)})^2) \)
- Tensorial functions: \(g^{(4)}_{abcd} = c_1 g^{(3)}_{abn} (Z^{-1})^{nm} g^{(3)}_{mcd} + \ldots \)
- even after ssb, all quartic couplings are functions of cubic ones
- In terms of inaction: \(I^{(4)}_{Q^2} = F(I^{(3)}_{Q^2}) \)
Peculiarity of non-abelian theories

Quartic couplings are functions of cubic couplings

- $g^{(4)} = f(g^{(3)}) = O((g^{(3)})^2)$
- Tensorial functions: $g^{(4)}_{abcd} = c_1 g^{(3)}_{abn} (Z^{-1})^{nm} g^{(3)}_{mcd} + ...$
- even after ssb, all quartic couplings are functions of cubic ones
- In terms of inaction: $I^{(4)}_{Q^2} = F(I^{(3)}_{Q^2})$
Consistency condition

- Function expressing four-point couplings in terms of three-point couplings is far from arbitrary.
- It should satisfy a consistency condition: $I_B^{(4)} = F(I_B^{(3)})$, which means that the form of this function is not renormalized.
- Discrete set of solutions to the consistency condition.
Consistency condition

- Function expressing four-point couplings in terms of three-point couplings is far from arbitrary.
- It should satisfy a consistency condition: $I_B^{(4)} = F(I_B^{(3)})$, which means that the form of this function is not renormalized.
- Discrete set of solutions to the consistency condition.
Consistency condition

- Function expressing four-point couplings in terms of three point couplings is far from arbitrary.
- It should satisfy a consistency condition: $I_B^{(4)} = F(I_B^{(3)})$, which means that the form of this function is not renormalized.
- Discrete set of solutions to the consistency condition.
COUNTERTERMS TO the FOUR-POINT FUNCTIONS ARE CONSTRUCTED AS NONLINEAR COMBINATIONS OF THE COUNTERTERMS TO THREE-POINT FUNCTIONS, TWO-POINT FUNCTIONS AND TADPOLES

The possibility of this construction is a general phenomenon. The non-abelian gauge theories is a particular instance of this phenomenon.

The standard approach (renormalization as “always” and derivation of relations between renormalization constants) allows one to ignore this phenomenon.

Deriving relations between renormalization constants replaces a basic feature of the theory with a technical problem, and complicates life. Hence, the need to replace Gell-Mann–Low with ‘t Hooft-Weinberg.
Motivation

Generalization of G-L

Generalization of Gauge Theories

Example: \(g_4 \sim g_3^2 \)

Conclusions

Comments

- **COUNTERTERMS TO the FOUR-POINT FUNCTIONS ARE CONSTRUCTED AS NONLINEAR COMBINATIONS OF THE COUNTERTERMS TO THREE-POINT FUNCTIONS, TWO-POINT FUNCTIONS AND TADPOLES**

- The possibility of this construction is a general phenomenon. The non-abelian gauge theories is a particular instance of this phenomenon

- The standard approach (renormalization as “always” and derivation of relations between renormalization constants) allows one to ignore this phenomenon

- Deriving relations between renormalization constants replaces a basic feature of the theory with a technical problem, and complicates life. Hence, the need to replace Gell-Mann–Low with ‘t Hooft-Weinberg
COUNTERTERMS TO the FOUR-POINT FUNCTIONS ARE CONSTRUCTED AS NONLINEAR COMBINATIONS OF THE COUNTERTERMS TO THREE-POINT FUNCTIONS, TWO-POINT FUNCTIONS AND TADPOLES

The possibility of this construction is a general phenomenon. The non-abelian gauge theories is a particular instance of this phenomenon.

The standard approach (renormalization as “always” and derivation of relations between renormalization constants) allows one to ignore this phenomenon.

Deriving relations between renormalization constants replaces a basic feature of the theory with a technical problem, and complicates life. Hence, the need to replace Gell-Mann–Low with ’t Hooft-Weinberg.
COUNTERTERMS TO the FOUR-POINT FUNCTIONS ARE CONSTRUCTED AS NONLINEAR COMBINATIONS OF THE COUNTERTERMS TO THREE-POINT FUNCTIONS, TWO-POINT FUNCTIONS AND TADPOLES.

The possibility of this construction is a general phenomenon. The non-abelian gauge theories is a particular instance of this phenomenon.

The standard approach (renormalization as “always” and derivation of relations between renormalization constants) allows one to ignore this phenomenon.

Deriving relations between renormalization constants replaces a basic feature of the theory with a technical problem, and complicates life. Hence, the need to replace Gell-Mann–Low with ‘t Hooft-Weinberg.
Scalar theory with sSB

Potential
\[V = \frac{\lambda}{24}(\phi^2 - v^2)^2 \]

SSB
\[\phi = \tilde{\phi} + \tilde{v}, \langle \tilde{\phi} \rangle = 0 \]

Potential after sSB
Dropping tilde on \(\phi \)
\[V(\phi) = \Lambda^3 \phi + \frac{m^2}{2} \phi^2 + \frac{\mu}{6} \phi^3 + \frac{\lambda}{24} \phi^4 \]

quartic coupling
\[\lambda = \frac{\mu^2}{3m^2(1+\sqrt{1-\frac{\Lambda^3\mu}{3m^4}})} \approx \frac{\mu^2}{6m^2} + \mathcal{O}(\mu^4) \]
Scalar theory with ssb

Potential
\[V = \frac{\lambda}{24} (\phi^2 - v^2)^2 \]

SSB
\[\phi = \tilde{\phi} + \tilde{v}, \langle \tilde{\phi} \rangle = 0 \]

Potential after ssb

Dropping tilde on \(\phi \)
\[V(\phi) = \Lambda^3 \phi + \frac{m^2}{2} \phi^2 + \frac{\mu}{6} \phi^3 + \frac{\lambda}{24} \phi^4 \]

quartic coupling
\[\lambda = \frac{\mu^2}{3m^2(1+\sqrt{1-\frac{\Lambda^3 \mu}{3m^4}})} \approx \frac{\mu^2}{6m^2} + O(\mu^4) \]
Scalar theory with ssb

Potential

\[V = \frac{\lambda}{24}(\phi^2 - v^2)^2 \]

SSB

\[\phi = \tilde{\phi} + \tilde{v}, \langle \tilde{\phi} \rangle = 0 \]

Potential after ssb

Dropping tilde on \(\phi \)

\[V(\phi) = \Lambda^3 \phi + \frac{m^2}{2} \phi^2 + \frac{\mu}{6} \phi^3 + \frac{\lambda}{24} \phi^4 \]

quartic coupling

\[\lambda = \frac{\mu^2}{3m^2(1 + \sqrt{1 - \frac{\Lambda^3 \mu}{3m^4}})} \approx \frac{\mu^2}{6m^2} + \mathcal{O}(\mu^4) \]
Scalar theory with ssb

Potential

$V = \frac{\lambda}{24} (\phi^2 - v^2)^2$

SSB

$\phi = \tilde{\phi} + \tilde{v}, \langle \tilde{\phi} \rangle = 0$

Potential after ssb

Dropping tilde on ϕ

$V(\phi) = \Lambda^3 \phi + \frac{m^2}{2} \phi^2 + \frac{\mu}{6} \phi^3 + \frac{\lambda}{24} \phi^4$

quartic coupling

$\lambda = \frac{\mu^2}{3m^2(1 + \sqrt{1 - \frac{\Lambda^3 \mu}{3m^4}})} \approx \frac{\mu^2}{6m^2} + O(\mu^4)$
Multicomponent generalization

Tensorial structure

The only admissible structure:

\[\lambda_{abcd} \approx \omega \mu_{abe} (m^{-2}) ee' \mu_{e'cd} \]

Uniqueness

\[\omega = \frac{1}{6} \text{ from renormalizability} \]
Multicomponent generalization

Tensorial structure

The only admissible structure:
\[\lambda_{abcd} \approx \omega \mu_{abe} (m^{-2}) ee' \mu'_{e'cd} \]

Uniqueness

\[\omega = \frac{1}{6} \text{ from renormalizability} \]
Conclusions

- A generalization of the Gell-Mann—Law scheme is given
- Generalizations of non-abelian gauge theories are defined
- Ready for computing Gell-Mann—Law evolution for the Standard Model parameters
- If there will be asymptotic freedom for scalar mass squared in the standard model (instead of the Landau pole of Φ^4), the naturalness problem will appear in the standard model. But the growth of the accuracy will be logarithmically slow. In this case the scale of new physics will be much larger than 1 TeV.
Conclusions

- A generalization of the Gell-Mann—Law scheme is given
- Generalizations of non-abelian gauge theories are defined
- Ready for computing Gell-Mann—Law evolution for the Standard Model parameters
- If there will be asymptotic freedom for scalar mass squared in the standard model (instead of the Landau pole of Φ^4), the naturalness problem will appear in the standard model. But the growth of the accuracy will be logarithmically slow. In this case the scale of new physics will be much larger than 1 TeV.
Conclusions

- A generalization of the Gell-Mann—Law scheme is given
- Generalizations of non-abelian gauge theories are defined
- Ready for computing Gell-Mann—Law evolution for the Standard Model parameters
- If there will be asymptotic freedom for scalar mass squared in the standard model (instead of the Landau pole of Φ^4), the naturalness problem will appear in the standard model. But the growth of the accuracy will be logarithmically slow. In this case the scale of new physics will be much larger than 1 TeV.
Conclusions

- A generalization of the Gell-Mann—Law scheme is given
- Generalizations of non-abelian gauge theories are defined
- Ready for computing Gell-Mann—Law evolution for the Standard Model parameters
- If there will be asymptotic freedom for scalar mass squared in the standard model (instead of the Landau pole of Φ^4), the naturalness problem will appear in the standard model. But the growth of the accuracy will be logarithmically slow. In this case the scale of new physics will be much larger than 1 TeV.