Heavy flavour studies with the ATLAS detector

Ina Chalupková on behalf of the ATLAS Collaboration

Charles University in Prague
Institute of Particle and Nuclear Physics

Hadron Structure 2015, 30.6.2015
ATLAS detector

Inner Detector: tracking, momentum and vertex measurement
- $|\eta| < 2.5$, d_0 resolution $\sim 10 \ \mu m$

Muon Spectrometer: trigger and muon identification
- $|\eta| < 2.7$

Mass resolution $\sigma(m_{J/\psi}) = 60 \pm 1 \ \text{MeV}$

\[\int \mathcal{L} \ dt = 0.24 \ \text{fb}^{-1} \]

\[N_{J/\psi} = (2.208 \pm 0.002) \times 10^6 \]
\[m_{J/\psi} = 3.094 \pm 0.003 \ \text{GeV} \]
\[\sigma_{m_{J/\psi}} = 60 \pm 1 \ \text{MeV} \]
Trigger and dataset

B-physics trigger:
- muons, di-muon decays (J/ψ, Υ)
- L1: single and di-muon triggers (threshold from $p_T = 4\text{GeV}$)
- L2 and EF: muons from common vertex, opposite charge
- invariant mass window of J/ψ, B and Υ un-prescaled in 2011
- 2012: added barrel-only triggers to keep a larger fraction of data

Datasets for analyses shown here:
- 2011 dataset at $\sqrt{s} = 7\text{ TeV}$, recorded $\int L = 5.08\text{ fb}^{-1}$
- 2012 dataset at $\sqrt{s} = 8\text{ TeV}$, recorded $\int L = 21.3\text{ fb}^{-1}$
- presenting selected recent results only, all results on https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults
Associated production of prompt and non-prompt J/ψ mesons and Z boson
Associated production of quarkonia with additional objects on LHC:
- single parton scattering (SPS)
- double parton scattering (DPS)

Event selection: \(J/\psi \rightarrow \mu^+\mu^- \), \(Z \rightarrow e^+e^- \) or \(\mu^+\mu^- \)
- \(Z \): muons \(p_T > 24 \) GeV or electrons \(p_T > 15 \) GeV, isolation requirement on leptons and trigger match for at least 1 lepton
- \(m(Z_{\text{cand}}) = m(Z_{\text{PDG}}) \pm 10 \) GeV
- \(J/\psi \): \(p_T > 8.5 \) GeV, \(|\eta| < 2.1 \), leading muon \(p_T > 4 \) GeV,
- dataset 2012, 20.3 \(fb^{-1} \)
Associated production of J/ψ and Z

Fit J/ψ mass and pseudo-proper time:

Prompt $J/\psi + Z$:
- $56 \pm 10 \pm 3$ events
- significance $> 5\sigma$

Non-prompt $J/\psi + Z$:
- $95 \pm 12 \pm 8$ events
- significance $> 9\sigma$

Azimuthal angle between J/ψ and Z:
- DPS expecting flat
- SPS peaking at high $\Delta \phi$
Associated production of J/ψ and Z

- normalised to the inclusive Z cross-section
- fiducial, inclusive (SPS+DPS) and DPS-subtracted cross-section
- compared to theoretical predictions (LO colour-singlet mechanism, NLO colour singlet and colour octet)
- models underestimate the SPS contribution

![Graph](https://via.placeholder.com/150)

ATLAS, $\sqrt{s}=8$ TeV, 20.3 fb$^{-1}$

$pp \rightarrow$ prompt $J/\psi + Z : pp \rightarrow Z$

$|y_{J/\psi}| < 2.1, 8.5 < p_T^{J/\psi} < 100$ GeV

Data

- Spin-alignment uncertainty

- NLO NRQCD CS
- NLO NRQCD CO
- NLO NRQCD CO+CS
- LO CSM

![Graph](https://via.placeholder.com/150)

ATLAS, $\sqrt{s}=8$ TeV, 20.3 fb$^{-1}$

$pp \rightarrow$ non-prompt $J/\psi + Z : pp \rightarrow Z$

$|y_{J/\psi}| < 2.1, 8.5 < p_T^{J/\psi} < 100$ GeV

Data

- Spin-alignment uncertainty

Ina Chalupková (Charles University)
Associated production of J/ψ and Z

Measured differential production cross-section as a function of p_T (again normalised to the inclusive Z cross-section)

![Graph 1: $J/\psi + Z$ production](image1)

![Graph 2: $J/\psi + Z$ production](image2)

ATLAS, $\sqrt{s}=8$ TeV, 20.3 fb$^{-1}$

$pp \rightarrow$ prompt $J/\psi+Z : pp \rightarrow Z$

$pp \rightarrow$ non-prompt $J/\psi+Z : pp \rightarrow Z$

Data
Spin-alignment uncert.
Total theoretical uncert.
NLO NRQCD CO
NLO NRQCD CS
DPS uncert.
Estimated DPS contrib.

$B(J/\psi \rightarrow \mu\mu) \times \frac{1}{\sigma(Z)}$

$p_T^{J/\psi}$ [GeV]

$B(J/\psi \rightarrow \mu\mu) \times \frac{1}{\sigma(Z)}$

$p_T^{J/\psi}$ [GeV]

Ina Chalupková (Charles University)
Associated production of J/ψ and Z

- can set upper limit on DPS contribution (assuming independent hard scattering in DPS)
- that gives lower limit on effective cross-section of DPS

$$\sigma_{\text{eff}} > 5.3 \ (3.7) \ \text{mb at 68 (95)}\% \ \text{C.L.}$$
Parity-violating asymmetry parameter α_b and helicity amplitudes of $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$
$\Lambda_b^0 \rightarrow J/\psi(\mu^+\mu^-) \Lambda^0(p\pi^-)$ helicity

Selection:
- J/ψ: $2.8 \text{ GeV} < m_{\mu\mu} < 3.4 \text{ GeV}$
- Λ^0: $1.08 \text{ GeV} < m_{hh} < 1.15 \text{ GeV}$
- Λ_b^0: $5.56 \text{ GeV} < m_{J/\psi^0} < 5.68 \text{ GeV}$
- cascade topology: $\chi^2/N_{dof} < 3$, $L_{xy} > 10 \text{ mm}$, $\tau_{\Lambda_b} > 0.35 \text{ ps}$
- $1400 \Lambda_b^0$ and $\bar{\Lambda}_b^0$ in 2011 dataset

Analysis:
- decay described by 4 helicity amplitudes
- parity violating asymmetry parameter
 $$\alpha_b = |a_+|^2 - |a_-|^2 + |b_+|^2 - |b_-|^2$$
- full angular PDF
- used method of moments F_i
- lifetime and mass measurement in Phys. Rev. D87 (2013) 032002
Check fit: compared F_i for data with weighted signal+background MC

Results:

\[
|a_+| = 0.17^{+0.12}_{-0.17}\text{(stat)} \pm 0.09\text{(syst)}
\]

\[
|a_-| = 0.59^{+0.06}_{-0.07}\text{(stat)} \pm 0.03\text{(syst)}
\]

\[
|b_+| = 0.79^{+0.04}_{-0.05}\text{(stat)} \pm 0.02\text{(syst)}
\]

\[
|b_-| = 0.08^{+0.13}_{-0.08}\text{(stat)} \pm 0.06\text{(syst)}
\]

\[
\alpha_b = 0.30 \pm 0.16\text{(stat)} \pm 0.06\text{(syst)}
\]

- Λ^0 and J/ψ are highly polarized in direction of their momenta
- α_b value consistent with LHCb:
 \[0.05\pm0.17\text{(stat)}\pm0.07\text{(syst)}\]
- inconsistent with pQCD
 $\alpha_b=\left(-0.17,-0.14\right)$ and HQET $\alpha_b=0.78$
 at a level of 2.6 and 2.8σ
Study of the $B_{c}^{+} \rightarrow J/\psi D_{s}^{+}$ and $B_{c}^{+} \rightarrow J/\psi D_{s}^{*+}$ decays
$B^+_c \rightarrow J/\psi D^+_s$ and $B^+_c \rightarrow J/\psi D^{*+}_s$ decays

B^\pm_c is an interesting object with two different heavy-flavour quarks

- decay $B^\pm_c \rightarrow J/\psi (\mu^+ \mu^-) \pi^\pm$ observed in 2011 data (ATLAS-CONF-2012-028)
- process $\bar{b} \rightarrow \bar{c} c \bar{s}$ allows B^+_c decay to charmonium and $D^{(*)}_s$
- subsequent $D^{*+}_s \rightarrow D^+_s (\gamma/\pi^0)$ and $D^+_s \rightarrow \phi (K^+ K^-) \pi^+$
- $B^+_c \rightarrow J/\psi D^{*+}_s$ helicity amplitudes: A_{++}, A_{--} and A_{00}
$B_c^+ \rightarrow J/\psi(\mu^+\mu^-)D_s^+(K^+K^-\pi^+) \text{ event selection}$

J/ψ:
- 2 muons $p_T > 3$ GeV
- χ^2/n.d.f(J/ψ) < 15
- $m(J/\psi)$ in 2800–3400 MeV

D_s^+:
- 3 tracks fitted to common vertex
- tracks $p_T > 1$ GeV
- χ^2/n.d.f < 8
- $m(K^+K^-)$ within \pm 7 MeV from m_{PDG}
- $m(K^+K^-\pi^+) = 1930$–2010 MeV
- 0.15 mm < L_{xy} < 10 mm
- pion pointing angle: $\cos \theta^* < 0.8$
- $|\cos^3 \theta(K\pi)| > 0.15$ in c.m.s (ϕ)

B_c^+: fitting cascade decay
- constraining J/ψ and D_s^+ masses to PDG values
- χ^2/n.d.f < 3
- $p_T > 15$ GeV
- $d_0 < 0.1$ mm; $z_0 \cdot \sin \theta < 0.5$ mm
- 0.1 mm < L_{xy} < 10 mm
- D_s^+ pointing: $\cos \theta^* > -0.8$
- 1547 $J/\psi D_s^+$ candidates selected
\[B^+_c \rightarrow J/\psi D_{s}^{(*)+} \text{ fit} \]

2D unbinned maximum likelihood fit of mass and helicity angle \(\theta'(\mu^{+}) \):
- \(B^+_c \rightarrow J/\psi D_s^+ \) signal
- \(B^+_c \rightarrow J/\psi D_{s}^{*+} \) with \(A_{\pm\pm} \)
- \(B^+_c \rightarrow J/\psi D_{s}^{*+} \) with \(A_{00} \)
- background

Measured transverse polarisation fraction of \(B^+_c \rightarrow J/\psi D_{s}^{*+} \)

\[\Gamma_{\pm\pm}/\Gamma = 0.38 \pm 0.23 \text{ (stat) } ^{+0.06}_{-0.07} \text{ (syst)} \]
$B_c^+ \rightarrow J/\psi D_s^{(*)+}$ branching fraction ratios

Ratios of branching fractions with $B_c^+ \rightarrow J/\psi \pi^+$ as reference decay:

$$\mathcal{R}_{D_s^+/\pi^+} = \frac{\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^+)}{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)} = 3.8 \pm 1.1 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.2 (\mathcal{B}_{D_s})$$

$$\mathcal{R}_{D_{s^*}^+/\pi^+} = \frac{\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^{*+})}{\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+)} = 10.3 \pm 3.1 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 0.6 (\mathcal{B}_{D_s})$$

Ratio of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ branching fractions:

$$\mathcal{R}_{D_{s^*}^+/D_s^+} = \frac{\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^{*+})}{\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^+)} = 2.7 \pm 1.1 \text{ (stat)} \pm 0.4 \text{ (syst)}$$
Observation of an excited B^\pm_c meson state
Excited states of B_c^{\pm} are predicted by NRQCD, pQCD and Lattice:

- 1S and 2S states have a mass splitting for 0^+ and 0^- components
- ATLAS not sensitive enough to distinguish them: missing soft gamma, mass resolution
\(B_c^{\pm}(1S) \rightarrow J/\psi(\mu^+\mu^-)\pi^{\pm}: \) selection and fit

\(B_c^{\pm}(1S) \) selection optimised separately for 2011 (2012) dataset:
- \(p_T(\mu) > 4 \) and 6 GeV
- \(\chi^2/\text{n.d.f} (J/\psi) < 15 \)
- \(m(J/\psi) \) 3\(\sigma \) from nominal mass
- \(\chi^2/\text{n.d.f} (B_c) < 2.0 \) (1.5)
- \(p_T(B_c) > 15 \) (18) GeV
- \(d_{xy}^0/\sigma(d_{xy}^0)(\pi^+) > 5 \) (4.5)

Unbinned fit of mass distribution:
- Gaussian with per-candidate error
- exponential background

Ina Chalupková (Charles University) ATLAS heavy flavour studies
$B_c^{\pm}(2S) \rightarrow B_c^{\pm}(2S)\pi^+\pi^-$

Candidate selection:
- $B_c^{\pm}(1S)$ within 3σ from fitted mass
- $p_T(\pi^{\pm}) > 400$ MeV
- if several candidates per event, select the one with the best cascade fit χ^2

Extended unbinned fit of Q-value:

$$Q_{B_c^{\pm}\pi\pi} = m(B_c^{\pm}\pi\pi) - m(B_c^{\pm}) - 2m(\pi)$$

- Gaussian signal
- 3rd order polynomial for background
Observation of an excited B_c^\pm state

Significance calculated using toy studies to account for "look elsewhere effect"
- 3.7σ in 7 TeV data
- 4.5σ in 8 TeV data
- combined significance is 5.2σ

Observed new state at

$$Q = 288.3 \pm 3.5 \text{ (stat)} \pm 4.1 \text{ (syst)} \text{ MeV}$$

corresponding to a mass

$$m = 6842 \pm 4 \text{ (stat)} \pm 5 \text{ (syst)} \text{ MeV}$$

consistent value of 6835–6917 MeV predicted by various theories
Search for X_b and other hidden-beauty states using $\pi^+\pi^- \Upsilon(1S)$ channel
Search for X_b

Heavy-quark symmetry suggests existence of X_b analogous to $X(3872)$ observed by Belle in $B^+ \rightarrow K^+ X(3872)$ with $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ (Phys. Rev. Lett. 91 (2003) 262001)

- search for X_b in $\Upsilon(nS)\pi^+\pi^-$
- mass predictions around 10.5 GeV

Data and selection:
- selected by di-muon trigger with $p_T > 4$ GeV, $m(\mu\mu) = 8$-12 GeV
- 16.2 fb$^{-1}$ at 8 TeV
- reconstructed 6 million $\Upsilon(1S)$ and 0.2 million $\Upsilon(2S)$ candidates

Expected number of X_b events

$$N = N_{2S} \cdot R \cdot \frac{A}{A_{2S}} \cdot \frac{\varepsilon}{2\varepsilon_{2S}}$$

where $R \equiv (\sigma B)/(\sigma B)_{2S}$ is production rate relative to $\Upsilon(2S)$
bin data according to S/B in p_T and $\cos(\theta)$

$\Upsilon(1S) \pi^+ \pi^-$ mass distribution for most sensitive bin – $\Upsilon(2S)$ and $\Upsilon(3S)$ peaks

invariant mass fits for $\Upsilon(2S)$ (barrel, endcap) and $\Upsilon(3S)$:
no evidence for X_b found

considered also different spin alignments for X_b

upper limits 0.8-4% (depending on mass) - currently the best limits

no evidence for production of $\Upsilon(1^3D_J)$ triplet, $\Upsilon(10860)$ or $\Upsilon(11020)$
B-physics programme will follow the Run 1 approach:
- precision measurements of rare processes, focus on potential beyond-SM effects
- heavy flavour production at 13 TeV
- searches for new and exotic states and decay modes

Detector upgrades during long shutdowns:
- already installed IBL, additional muon chambers, consolidation
 – improved tracking, impact parameter and decay time resolution
- study potential for CPV measurements, e.g. $B_s^0 \rightarrow J/\psi \phi$

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2012</th>
<th>2015-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>current</td>
<td>current</td>
<td>IBL</td>
</tr>
<tr>
<td>Average interactions per BX $<\mu>$</td>
<td>6-12</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>Luminosity, fb$^{-1}$</td>
<td>4.9</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>Di-μ trigger p_T thresholds, GeV</td>
<td>4 - 4(6)</td>
<td>4 - 6</td>
<td>6 - 6</td>
</tr>
<tr>
<td>Signal events per fb$^{-1}$</td>
<td>4 400</td>
<td>4 320</td>
<td>3 280</td>
</tr>
<tr>
<td>Signal events</td>
<td>22 000</td>
<td>86 400</td>
<td>327 900</td>
</tr>
<tr>
<td>Total events in analysis</td>
<td>130 000</td>
<td>550 000</td>
<td>1 874 000</td>
</tr>
<tr>
<td>MC $\sigma(\phi_s)$ (stat.), rad</td>
<td>0.25</td>
<td>0.12</td>
<td>0.054</td>
</tr>
</tbody>
</table>
The large amount of Heavy Flavour data collected by ATLAS is potentially sensitive to New Physics. Presented analyses:

- associated production of J/ψ and Z
- asymmetry parameter and helicity amplitudes of $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$
- $B^+_c \rightarrow J/\psi D_s^{*-}$
- B^\pm_c (2S) observation
- search for $X_b \rightarrow \Upsilon(nS)\pi^+\pi^-$

Few more measurements and searches from Run1 dataset to be completed soon and we are collecting first data from Run2.

Thank you for your attention.
Backup slides
Associated production of W and prompt J/ψ

Probes quarkonium production mechanism, sensitive to multiple parton interactions.

Selection:
- prompt J/ψ via mass and pseudo-proper time
- W^{\pm} muon trigger, identified by μ and missing p_T
- fit W^{\pm} transverse mass with multijet background
- 29 events with W^{\pm} J/ψ
Associated production of W and prompt J/ψ

- double parton scattering estimate $\sim 40\%$ from
 \[d\sigma_{J/\psi|W} = \sigma_W \otimes \sigma_{J/\psi}/\sigma_{\text{eff}} \]
- extract inclusive (SPS+DPS) cross-section ratio
- comparison with theory: measured rate underestimated (but large uncertainties of data)

![Graph showing ATLAS preliminary data for $W + \text{prompt J}/\psi$](image)

Ina Chalupková (Charles University) - ATLAS heavy flavour studies

30.6.2015
$B^0_s \rightarrow J/\psi\phi$ analysis

- tagged analysis using 2011 data (4.9 fb$^{-1}$)
- measured

$$\phi_s = 0.12 \pm 0.25 \text{ (stat)} \pm 0.05 \text{ (syst) rad}$$

$$\Delta \Gamma_s = 0.053 \pm 0.021 \text{ (stat)} \pm 0.010 \text{ (syst) ps}^{-1}$$

- about to release analysis using 2012 data