CPLEAR data on $K^0(\bar{K}^0) \rightarrow \pi^{\pm}e^{\mp}\nu$ and the mass difference $(m_L - m_S)$ determination

S. Dubnicka, Anna Z. Dubnickova,

Institute of Physics, Slovak Academy of Sciences, Bratislava
Department of Theoretical Physics, Comenius University, Bratislava, Slovak Republic

July 1, 2015

Hadron Structure’15 Conference, 29th June.-3rd July, 2015
INTRODUCTION

RELATION BETWEEN MASS DIFFERENCES \((m_L - m_S)\) and \((m_2 - m_1)\)

OSCILLATIONS OF NEUTRAL \(K\) MESONS THROUGH \(K_1^0, K_2^0\)

OSCILLATIONS OF NEUTRAL \(K\) MESONS THROUGH \(K_S^0, K_L^0\)

CONCLUSIONS
The neutral K-mesons K^0, \bar{K}^0, produced in strong and EM interactions, appear with charged K-mesons as the iso-doublets (K^+, K^0) and (K^-, \bar{K}^0) in the nonet of pseudoscalar mesons - $\pi^+, \pi^0, \pi^-, K^+, K^0, \bar{K}^0, K^-, \eta, \eta'$ - characterized by the quantum numbers $I(J^P) = 1/2(0^-)$ and the ”strangenes” $S = +1$ and $S = -1$, respectively.
The single K^0 mesons can be produced e.g. in the process
\[\pi^- p \to K^0 \Lambda^0. \]

However, ”concurrently” K^0 and \bar{K}^0 are produced by the \bar{p} annihilation at rest in a hydrogen target
\[\bar{p} p \to K^- \pi^+ K^0 \text{ or } K^+ \pi^- \bar{K}^0 \text{ (CPLEAR at CERN) } \]
each having the branching ratio 2×10^{-3}.

Then the ”strangenes” S of neutral K-mesons can be ”tagged” by measuring the charge sign of the accompanying K^\pm - therefore it is known ”event by event”.

S. Dubnicka, Anna Z. Dubnickova, CPLEAR data on $K^0(\bar{K}^0) \to \pi^\pm e^\mp \nu$ and the mass difference.
Another possibility to "tag" S of produced K^0 and \bar{K}^0 is an investigation of their subsequent semi-leptonic decays

$$K \rightarrow l \pi \nu \quad (l = e, \mu)$$

by the charge-sign of the e.g. "positron" and "electron" in final state, as

$$K_0 \rightarrow e^+ \pi^- \nu$$

$$\bar{K}_0 \rightarrow e^- \pi^+ \bar{\nu}.$$
The quantum number "strangeness" S is conserved in strong and EM interactions.

The violation of S in weak interaction is responsible not only for decays of K^0 and \bar{K}^0 mesons, but also gives rise to the so-called "oscillations" of neutral K-mesons $K^0 \leftrightarrow \bar{K}^0$ in time.
Both K^0 and \bar{K}^0 can decay into two pions

$\pi^0\pi^0, \pi^+\pi^-$

and also into three pions

$\pi^0\pi^0\pi^0, \pi^+\pi^-\pi^0,$

whereby the pion system possess well defined "CP-parity", +1 and −1, respectively.

However - neither K^0 nor \bar{K}^0 are eigenstates of CP operator

$CP|K^0\rangle = -|\bar{K}^0\rangle$

$CP|\bar{K}^0\rangle = -|K^0\rangle.
On account of this reason new particles K^0_1 and K^0_2 have been defined to exist as a superposition of K^0 and \bar{K}^0

$$|K^0_1\rangle = \frac{1}{\sqrt{2}} (|K^0\rangle - |\bar{K}^0\rangle)$$

$$|K^0_2\rangle = \frac{1}{\sqrt{2}} (|K^0\rangle + |\bar{K}^0\rangle)$$

with definite CP parity values

$CP|K^0_1\rangle = +|K^0_1\rangle$

$CP|K^0_2\rangle = -|K^0_2\rangle$.

As a consequence of the latter K^0_1 can decay into two pions and K^0_2 can decay into three pions.
But - in 1964

Christenson, Cronin, Fitch and Turlay, Phys. Rev Lett. 13 (1964) 138

have revealed decay $K_2^0 \rightarrow \pi^+\pi^-, \pi^0\pi^0$ with some small probability - violating CP-invariance.

As a consequence another two neutral K-mesons, K_S^0 and K_L^0 to be a linear combinations of K_1^0 and K_2^0, have been introduced to exist

\[
\begin{align*}
|K_S^0\rangle &= \frac{1}{\sqrt{1 + |\varepsilon|^2}} (|K_1^0\rangle + \varepsilon |K_2^0\rangle) \\
|K_L^0\rangle &= \frac{1}{\sqrt{1 + |\varepsilon|^2}} (\varepsilon |K_1^0\rangle + |K_2^0\rangle)
\end{align*}
\]

where ε is a complex CP-violation parameter, $|\varepsilon| = 2, 3.10^{-3}$ and the CP-violation phase $\Phi = 43, 5^\circ$.

\[\text{CLEAR data on } K^0(\bar{K}^0) \rightarrow \pi^\pm e^\mp \nu \text{ and the mass difference}\]
Next $K^0 \leftrightarrow \bar{K}^0$ "oscillations" in vacuum are investigated.

First, oscillations through K_1^0 and K_2^0 mesons, when CP-invariance is considered.

Then, oscillations through K_S^0 and K_L^0 mesons, considering the CP-violation.

Note:
However, according to our knowledge there are no experimental results about direct measurements of the $K^0 \leftrightarrow \bar{K}^0$ "oscillations" in vacuum.

Only measurements of the semi-leptonic decays of neutral K-mesons

\[
K^0 \rightarrow \pi^- e^+ \nu \\
\bar{K}^0 \rightarrow \pi^+ e^- \bar{\nu}
\]

are carried out and the data on the so-called asymmetry (see Fig.), extracting four decay rates R as a function of the decay eigentime τ.
\[
R_+(\tau) = R(K^0_{t=0} \rightarrow \pi^- e^+ \nu_{t=\tau}) \\
\bar{R}_-(\tau) = R(\bar{K}^0_{t=0} \rightarrow \pi^+ e^- \bar{\nu}_{t=\tau}) \\
R_-(\tau) = R(K^0_{t=0} \rightarrow \pi^+ e^- \bar{\nu}_{t=\tau}) \\
\bar{R}_+(\tau) = R(\bar{K}^0_{t=0} \rightarrow \pi^- e^+ \nu_{t=\tau})
\]

\[
A_{exp}(\tau) = \frac{[R_+(\tau) + \bar{R}_-(\tau)] - [\bar{R}_+(\tau) + R_-(\tau)]}{[R_+(\tau) + \bar{R}_-(\tau)] + [\bar{R}_+(\tau) + R_-(\tau)]}
\]

have been obtained

from CPLEAR at CERN.
INTRODUCTION

RELATION BETWEEN MASS DIFFERENCES \((m_L - m_S)\) and \((m_2 - m_1)\)

OSCILLATIONS OF NEUTRAL \(K\) MESONS THROUGH \(K^0_L, K^0_S\)

OSCILLATIONS OF NEUTRAL \(K\) MESONS THROUGH \(K^0_S, K^0_L\)

CONCLUSIONS

Figure: The data on ASYMMETRY to be obtained by CPLEAR Coll.
But, before the latter, a relation between the mass difference of K_1^0 and K_2^0, $(m_2 - m_1)$ and the mass difference of K_S^0 and K_L^0, $(m_L - m_S)$ is derived in order to demonstrate that they are not identical.
The complex masses of the K_1^0 and K_2^0 mesons can be defined as matrix elements from the weak Hamiltonian between K_1^0 and K_2^0 meson state vectors.

If one substitutes instead of the latter expressions to be expressed through $|K^0\rangle$ and $|\bar{K}^0\rangle$, one gets relations

$$m_1 - i\frac{\Gamma_1}{2} = \langle K_1^0 | H^w | K_1^0 \rangle = \frac{1}{2}[\langle K^0 | H^w | K^0 \rangle - \langle \bar{K}^0 | H^w | K^0 \rangle - \langle K^0 | H^w | \bar{K}^0 \rangle + \langle \bar{K}^0 | H^w | \bar{K}^0 \rangle]$$

$$m_2 - i\frac{\Gamma_2}{2} = \langle K_2^0 | H^w | K_2^0 \rangle = \frac{1}{2}[\langle K^0 | H^w | K^0 \rangle + \langle \bar{K}^0 | H^w | K^0 \rangle + \langle K^0 | H^w | \bar{K}^0 \rangle + \langle \bar{K}^0 | H^w | \bar{K}^0 \rangle]$$
from where for the mass difference of K_2^0 and K_1^0 mesons one obtains

$$(m_2 - m_1) = \text{Re}\langle \bar{K}^0 \mid H^w \mid K^0 \rangle + \text{Re}\langle K^0 \mid H^w \mid \bar{K}^0 \rangle$$
Now, similarly

\[
m_s - i \frac{\Gamma_s}{2} = \langle K_s^0 \mid H^w \mid K_s^0 \rangle = \frac{1}{2(1 + |\epsilon|^2)} \times \\
\left[(1 + \epsilon^*)(1 + \epsilon)\langle K^0 \mid H^w \mid K^0 \rangle - \\
- (1 - \epsilon^*)(1 + \epsilon)\langle \tilde{K}^0 \mid H^w \mid K^0 \rangle - \\
- (1 + \epsilon^*)(1 - \epsilon)\langle K^0 \mid H^w \mid \tilde{K}^0 \rangle + \\
+ (1 - \epsilon^*)(1 - \epsilon)\langle \tilde{K}^0 \mid H^w \mid \tilde{K}^0 \rangle \right]
\]
\[m_L - i \frac{\Gamma_L}{2} = \langle K^0_L | H^w | K^0_L \rangle = \frac{1}{2(1 + |\varepsilon|^2)} \times \]

\[
\left[(1 + \varepsilon^*)(1 + \varepsilon) \langle K^0 | H^w | K^0 \rangle + \\
+ (1 - \varepsilon^*)(1 + \varepsilon) \langle \bar{K}^0 | H^w | K^0 \rangle + \\
+ (1 + \varepsilon^*)(1 - \varepsilon) \langle K^0 | H^w | \bar{K}^0 \rangle + \\
+ (1 - \varepsilon^*)(1 - \varepsilon) \langle \bar{K}^0 | H^w | \bar{K}^0 \rangle \right]
\]
and for the mass difference of K_L^0 and K_S^0 mesons one obtains the relation

$$\left(m_L - m_S \right) = \frac{(1-|\varepsilon|)^2}{(1+|\varepsilon|)^2} (m_2 - m_1) +$$

$$+ \frac{2Im\varepsilon}{(1+|\varepsilon|^2)} \left[Im\langle K^0 | H^w | \bar{K}^0 \rangle - Im\langle \bar{K}^0 | H^w | K^0 \rangle \right]$$

from which one can see immediately that both mass differences are not identical.
Now one can write relations

\[|K^0\rangle = \frac{1}{\sqrt{2}}(|K_1^0\rangle + |K_2^0\rangle) \]

\[|\bar{K}^0\rangle = \frac{1}{\sqrt{2}}(-|K_1^0\rangle + |K_2^0\rangle), \]

which are just the **inverse transformations** to those by means of which the existence of \(|K_1^0\rangle\) and \(|K_2^0\rangle\) has been introduced previously.
The time dependence of state vectors of K_1^0, K_2^0 is

$$|K_1^0(t)\rangle = e^{im_1 t - \Gamma_1/2t} |K_1^0(0)\rangle$$
$$|K_2^0(t)\rangle = e^{im_2 t - \Gamma_2/2t} |K_2^0(0)\rangle$$

with m_1, m_2 and Γ_1, Γ_2 the masses and widths of K_1^0, K_2^0, respectively.
Then, for the state vectors \(|K^0(t)\rangle\), \(|\bar{K}^0(t)\rangle\) one can write expressions

\[
|K^0(t)\rangle = \frac{1}{2} \left[e^{-im_1 t - \Gamma_1/2t} + e^{-im_2 t - \Gamma_2/2t} \right] \cdot |K^0(0)\rangle + \frac{1}{2} \left[e^{-im_2 t - \Gamma_2/2t} - e^{-im_1 t - \Gamma_1/2t} \right] \cdot |\bar{K}^0(0)\rangle
\]

\[
|\bar{K}^0(t)\rangle = \frac{1}{2} \left[e^{-im_2 t - \Gamma_2/2t} - e^{-im_1 t - \Gamma_1/2t} \right] \cdot |K^0(0)\rangle + \frac{1}{2} \left[e^{-im_1 t - \Gamma_1/2t} + e^{-im_2 t - \Gamma_2/2t} \right] \cdot |\bar{K}^0(0)\rangle
\]

to be ready for calculations of the \(K^0 \leftrightarrow \bar{K}^0 \) oscillations.
In order to find an explicit form of the **theoretical asymmetry** \(A_{th}(\tau) \) one has to calculate probabilities of the following transitions:

\[
P(K^0(0) \rightarrow \bar{K}^0(t)), \quad P(\bar{K}^0(0) \rightarrow K^0(t)), \quad P(K^0(0) \rightarrow K^0(t)) \quad \text{and} \quad P(\bar{K}^0(0) \rightarrow \bar{K}^0(t)).
\]
The probability - that the \(K^0 \) meson produced at the moment \(t = 0 \) will be at the moment \(t \neq 0 \) in the state of \(\bar{K}^0 \) meson, is given by the absolute value squared of the product
\[
\langle K^0(0) \parallel \bar{K}^0(t) \rangle.
\]
Similarly the reversed probability, whereby the orthogonality of \(K^0(0) \) and \(\bar{K}^0(0) \) states is exploited. The result is

\[
P(K^0(0) \rightarrow \bar{K}^0(t)) \equiv P(\bar{K}^0(0) \rightarrow K^0(t)) = \frac{1}{4} [e^{-\Gamma_1 t} + e^{-\Gamma_2 t} - 2\cos[(m_2 - m_1)t]e^{-\frac{(\Gamma_1 + \Gamma_2)}{2}t}]
\]
as we consider the \textit{CP-invariance} which creates \textit{T-invariance} because of the \textit{CPT} conservation.
One has to calculate also $P(K^0(0) \rightarrow K^0(t))$ and $P(\bar{K}^0(0) \rightarrow \bar{K}^0(t))$ transitions in a similar way, which are taking the following forms

$$P(K^0(0) \rightarrow K^0(t)) \equiv P(\bar{K}^0(0) \rightarrow \bar{K}^0(t)) = \frac{1}{4} [e^{-\Gamma_1 t} + e^{-\Gamma_2 t} + 2\cos[(m_2 - m_1)t]e^{-\frac{(\Gamma_1 + \Gamma_2)}{2}t}].$$
Substituting all these probabilities of the corresponding transitions into the theoretical Asymmetry

\[
A_{th}(t) = \frac{[P_{K^0(0)\to K^0(t)} + P_{\bar{K}^0(0)\to \bar{K}^0(t)}] - [P_{\bar{K}^0(0)\to K^0(t)} + P_{K^0(0)\to \bar{K}^0(t)}]}{[P_{K^0(0)\to K^0(t)} + P_{\bar{K}^0(0)\to \bar{K}^0(t)}] + [P_{\bar{K}^0(0)\to K^0(t)} + P_{K^0(0)\to \bar{K}^0(t)}]}
\]

finally, the following three-parametric expression

\[
A_{th}(t) = \frac{2 \cos[(m_2 - m_1)t]e^{-(\Gamma_1+\Gamma_2)/2}t}{e^{-\Gamma_1t} + e^{-\Gamma_2t}}
\]

is found, in which, however, the time \(t \) has to be redefined \(t' = \frac{t}{\tau_1} \).
The neutral K_S^0 and K_L^0 mesons have been introduced by the relations

\[
|K_S^0\rangle = \frac{1}{\sqrt{1 + |\epsilon|^2}}(|K_1^0\rangle + \epsilon |K_2^0\rangle)
\]

\[
|K_L^0\rangle = \frac{1}{\sqrt{1 + |\epsilon|^2}}(\epsilon |K_1^0\rangle + |K_2^0\rangle)
\]

where ϵ is a complex CP-violation parameter, $|\epsilon| = 2, 3.10^{-3}$ and the CP-violation phase $\Phi = 43, 5^\circ$.

If for K_1^0 and K_2^0 the previous relations

\[
|K_1^0\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle - |\bar{K}^0\rangle)
\]

\[
|K_2^0\rangle = \frac{1}{\sqrt{2}}(|K^0\rangle + |\bar{K}^0\rangle)
\]
are substituted, then one obtains K^0_S, K^0_L to be expressed through K^0 and \bar{K}^0 as follows

$$|K^0_S\rangle = \frac{1}{\sqrt{2}\sqrt{1 + |\varepsilon|^2}}[(1 + \varepsilon)|K^0\rangle - (1 - \varepsilon)|\bar{K}^0\rangle]$$

$$|K^0_L\rangle = \frac{1}{\sqrt{2}\sqrt{1 + |\varepsilon|^2}}[(1 + \varepsilon)|K^0\rangle + (1 - \varepsilon)|\bar{K}^0\rangle]$$

and the inverse relations to them are
\[| K^0 \rangle = \frac{\sqrt{1 + |\varepsilon|^2}}{\sqrt{2(1 + \varepsilon)}} [| K^0_S \rangle + | K^0_L \rangle] \]

\[| \bar{K}^0 \rangle = \frac{\sqrt{1 + |\varepsilon|^2}}{\sqrt{2(1 - \varepsilon)}} [- | K^0_S \rangle + | K^0_L \rangle] . \]

The **time evolution** of state vectors \(| K^0_S \rangle \) and \(| K^0_L \rangle \) is given by the expressions

\[| K^0_S(t) \rangle = e^{-i m_S t - \Gamma_S/2t} | K^0_S(0) \rangle \]
\[| K^0_L(t) \rangle = e^{-i m_L t - \Gamma_L/2t} | K^0_L(0) \rangle \]

with \(m_S, m_L \) and \(\Gamma_S, \Gamma_L \) the masses and widths of \(K^0_S, K^0_L \), respectively, and finally for \(| K^0(t) \rangle \) and \(| \bar{K}^0(t) \rangle \) one can then write
\[| K^0(t) \rangle = \frac{1}{2} \left[(e^{-im_st - \Gamma_s/2t} + e^{-imLt - \Gamma_L/2t}) | K^0(0) \rangle + \frac{(1 - \varepsilon)}{(1 + \varepsilon)}(-e^{-im_st - \Gamma_s/2t} + e^{-imLt - \Gamma_L/2t}) | \bar{K}^0(0) \rangle \right] \]

\[| \bar{K}^0(t) \rangle = \frac{1}{2} \left[(1 + \varepsilon) \left[-e^{-im_st - \Gamma_s/2t} + e^{-imLt - \Gamma_L/2t} \right] | K^0(0) \rangle + \frac{(1 + \varepsilon)}{(1 - \varepsilon)} \left[e^{-imSt - \Gamma_s/2t} + e^{-imLt - \Gamma_L/2t} \right] | \bar{K}^0(0) \rangle \right]. \]
The probability - that the K^0 meson produced at the moment $t = 0$ will be at the moment $t \neq 0$ in the state of \bar{K}^0 meson, is given by the absolute value squared of the product $\langle K^0(0) | \bar{K}^0(t) \rangle$, i.e.

$$P(K^0(0) \to \bar{K}^0(t)) = \frac{1}{4} \frac{(1 + |\varepsilon|^2 + 2Re\varepsilon)}{(1 + |\varepsilon|^2 - 2Re\varepsilon)} \left[e^{-\Gamma_S t} + e^{-\Gamma_L t} - 2\cos[(m_L - m_S)t]e^{-\frac{(\Gamma_S + \Gamma_L)}{2}t} \right],$$

whereby the orthogonality of $|K^0(0)\rangle$ and $|\bar{K}^0(0)\rangle$ states is exploited.
Similarly the probability of inverse transition

\[P(\bar{K}^0(0) \rightarrow K^0(t)) = \]
\[\frac{1}{4} \frac{(1 + |\varepsilon|^2 - 2Re\varepsilon)}{(1 + |\varepsilon|^2 + 2Re\varepsilon)} \left[e^{-\Gamma_{st}} + e^{-\Gamma_{Lt}} - 2\cos[(m_L - m_S)t]e^{-\frac{\Gamma_{S} + \Gamma_{L}}{2}}t \right]. \]

One can see immediately that

[\[P(K^0(0) \rightarrow \bar{K}^0(t)) \neq P(\bar{K}^0(0) \rightarrow K^0(t)) \]]

as we consider now CP-violation.
In order to calculate the **theoretical ASYMMETRY** one has to calculate also \(P(K^0(0) \rightarrow K^0(t)) \) and \(P(\bar{K}^0(0) \rightarrow \bar{K}^0(t)) \) in a similar way. They are

\[
P(K^0(0) \rightarrow K^0(t)) \equiv P(\bar{K}^0(0) \rightarrow \bar{K}^0(t)) = \\
\frac{1}{4} [e^{-\Gamma_{st} t} + e^{-\Gamma_{Lt} t} + 2\cos[(m_L - m_S)t]e^{-\frac{(\Gamma_S + \Gamma_L)}{2} t}].
\]

Substituting all these probabilities of the corresponding transitions into the theoretical Asymmetry

\[
A_{th}(t) = \frac{[P_{K^0(0) \rightarrow K^0(t)} + P_{\bar{K}^0(0) \rightarrow \bar{K}^0(t)}] - [P_{\bar{K}^0(0) \rightarrow K^0(t)} + P_{K^0(0) \rightarrow \bar{K}^0(t)}]}{[P_{K^0(0) \rightarrow K^0(t)} + P_{\bar{K}^0(0) \rightarrow \bar{K}^0(t)}] + [P_{\bar{K}^0(0) \rightarrow K^0(t)} + P_{K^0(0) \rightarrow \bar{K}^0(t)}]}
\]

now the following five parametric expression is found
\[A_{th}(t) = \frac{2\cos[(m_L - m_S)t]e^{-\frac{(\Gamma_S + \Gamma_L)t}{2}} - \frac{4Re^2\varepsilon}{(1+|\varepsilon|^2)^2}(e^{-\Gamma_ST} + e^{-\Gamma_LT})}{(e^{-\Gamma_ST} + e^{-\Gamma_LT}) - \frac{4Re^2\varepsilon}{(1+|\varepsilon|^2)^2}2\cos[(m_L - m_S)t]e^{-\frac{(\Gamma_S + \Gamma_L)t}{2}}} , \]

however, different from the previous relation with characteristics of \(K_1^0, K_2^0 \).

Since experimentally the ASYMMETRY is measured in the mean life time \(\tau \) of \(K_S^0 \), the time \(t \) is again redefined

\[t' = \frac{t}{\tau_S}.\tau_S . \]
Despite of these differences in $A_{th}(t)$, the authors of the CPLEAR Coll. paper

for a determination of mass differences $K_L - K_S$ have used the $A_{th}(t)$ formula to be derived by considerations of $K^0 \leftrightarrow \bar{K}^0$ "oscillations" through K_1^0, K_2^0.

Consequences:
Taking into account results of our presentation, they have measured actually the mass difference of $K_2 - K_1$ mesons and in no case $K_L - K_S$ one as they are declaring.